Saturday, October 14, 2023
HomeNanotechnologyZinc cyclic di-AMP nanoparticles goal and suppress tumours by way of endothelial...

Zinc cyclic di-AMP nanoparticles goal and suppress tumours by way of endothelial STING activation and tumour-associated macrophage reinvigoration


  • Solar, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that prompts the sort I interferon pathway. Science 339, 786–791 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, sort I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Solar, L. & Chen, Z. J. Regulation and performance of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced sort I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pantelidou, C. et al. PARP inhibitor efficacy relies on CD8+ T-cell recruitment by way of intratumoral sting pathway activation in BRCA-deficient fashions of triple-negative breast most cancers. Most cancers Discov. 9, 722–737 (2019).

    Article 

    Google Scholar
     

  • Wang, Z. et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Make investments. 129, 4850–4862 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA injury in breast most cancers. J. Natl Most cancers Inst. 109, djw199 (2017).

    Article 

    Google Scholar
     

  • Mender, I. et al. Telomere stress potentiates STING-dependent anti-tumor immunity. Most cancers Cell 38, 400–411.e6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lara, P. N. et al. Randomized part III placebo-controlled trial of carboplatin and paclitaxel with or with out the vascular disrupting agent vadimezan (ASA404) in superior non-small-cell lung most cancers. J. Clin. Oncol. 29, 2965–2971 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gao, P. et al. Binding-pocket and lid-region substitutions render human STING delicate to the species-specific drug DMXAA. Cell Rep. 8, 1668–1676 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ding, C., Tune, Z., Shen, A., Chen, T. & Zhang, A. Small molecules concentrating on the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta Pharm. Sin. B 10, 2272–2298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meric-Bernstam, F. et al. Section Ib research of MIW815 (ADU-S100) together with spartalizumab (PDR001) in sufferers (pts) with superior/metastatic strong tumors or lymphomas. J. Clin. Oncol. 37, 2507–2507 (2019).

    Article 

    Google Scholar
     

  • Pan, B. S. et al. An orally obtainable non-nucleotide STING agonist with antitumor exercise. Science https://doi.org/10.1126/science.aba6098 (2020).

  • Solar, X. et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for native and systemic most cancers metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Nanoparticle-based drug supply in most cancers remedy and its position in overcoming drug resistance. Entrance. Mol. Biosci. 7, 193 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Irvine, D. J. & Dane, E. L. Enhancing most cancers immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sykes, E. A., Chen, J., Zheng, G. & Chan, W. C. W. Investigating the influence of nanoparticle dimension on energetic and passive tumor concentrating on effectivity. ACS Nano 8, 5696–5706 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Duan, X. et al. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat. Commun. 10, 1899 (2019).

    Article 

    Google Scholar
     

  • Corrales, L. et al. Direct activation of STING within the tumor microenvironment results in potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lemos, H. et al. Overcoming resistance to STING agonist remedy to incite sturdy protecting antitumor immunity. J. Immunother. Most cancers 8, e001182 (2020).

    Article 

    Google Scholar
     

  • Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. Liposomal formulations in medical use: an up to date evaluation. Pharmaceutics 9, 12 (2017).

    Article 

    Google Scholar
     

  • Fang, J., Nakamura, H. & Maeda, H. The EPR impact: distinctive options of tumor blood vessels for drug supply, components concerned, and limitations and augmentation of the impact. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kingston, B. R. et al. Particular endothelial cells govern nanoparticle entry into strong tumors. ACS Nano 15, 14080–14094 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Make investments. 129, 4350–4364 (2019).

    Article 

    Google Scholar
     

  • Barber, G. N. STING: an infection, irritation and most cancers. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA injury responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sangfelt, O. & Strander, H. Apoptosis and cell development inhibition as antitumor effector features of interferons. Med. Oncol. 18, 3–14 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, illness and most cancers immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. γδ T cells present an early supply of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, Okay. & Chiba, Okay. FTY720 story. Its discovery and the next accelerated growth of sphingosine 1-phosphate receptor agonists as immunomodulators based mostly on reverse pharmacology. Perspect. Med. Chem. 1, 11–23 (2007).


    Google Scholar
     

  • Zheng, W. et al. Mixture of radiotherapy and vaccination overcome checkpoint blockade resistance. Oncotarget 7, 43039–43051 (2016).

    Article 

    Google Scholar
     

  • Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor management in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, N. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive fashions of triple-negative breast most cancers. JCI perception https://doi.org/10.1172/jci.perception.120638 (2018).

  • Ohkuri, T., Kosaka, A., Nagato, T. & Kobayashi, H. Results of STING stimulation on macrophages: STING agonists polarize into ‘classically’ or ‘alternatively’ activated macrophages? Hum. Vaccin. Immunother. 14, 285–287 (2018).

    Article 

    Google Scholar
     

  • You, L. et al. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J. Hematol. Oncol. 10, 165 (2017).

    Article 

    Google Scholar
     

  • Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen destiny. Science 307, 1630–1634 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J., Dobbs, N., Yang, Okay. & Yan, N. Interferon-independent actions of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126.e5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. L. Mixture most cancers immunotherapies tailor-made to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bush, N. A. O., Chang, S. M. & Berger, M. S. Present and future methods for therapy of glioma. Neurosurgic. Rev. 40, 1–14 (2017).

    Article 

    Google Scholar
     

  • Filippone, A. et al. PD1/PD-L1 immune checkpoint as a possible goal for stopping mind tumor development. Most cancers Immunol. Immunother. 71, 2067–2075 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ranoa, D. R. E. et al. Molecular cell biology STING promotes homeostasis by way of regulation of cell proliferation and chromosomal stability. Most cancers Res. 79, 1465–1479 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liao, Y., Smyth, G. Okay. & Shi, W. FeatureCounts: an environment friendly normal goal program for assigning sequence reads to genomic options. Bioinformatics https://doi.org/10.1093/bioinformatics/btt656 (2014).

  • Costa-Silva, J., Domingues, D. & Lopes, F. M. RNA-Seq differential expression evaluation: an prolonged evaluation and a software program device. PLoS ONE 12, e0190152 (2017).

    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, Okay. Macrophage polarization: totally different gene signatures in M1(Lps+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Entrance. Immunol. https://doi.org/10.3389/fimmu.2019.01084 (2019).



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments