Wang, S. et al. Two-dimensional units and integration in the direction of the silicon strains. Nat. Mater. 21, 1225–1239 (2022).
Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and different III2–VI3 van der Waals supplies. Nat. Commun. 8, 14956 (2017).
Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).
Li, Q. et al. Optoelectronic and ionic results on transport in van der Waals steel selenophosphate AgBiP2Se6. Phys. Rev. Appl. 19, 054055 (2023).
Shang, J. et al. Stacking-dependent interlayer ferroelectric coupling and moiré domains in a twisted AgBiP2Se6 bilayer. J. Phys. Chem. Lett. 13, 2027–2032 (2022).
Liao, J. et al. Van der Waals ferroelectric semiconductor subject impact transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023).
Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).
Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a brand new class of ferroelectric/ferroelastic supplies with extremely excessive mobility. Nano Lett. 17, 6309–6314 (2017).
Tan, C. et al. 2D fin field-effect transistors built-in with epitaxial high-ok gate oxide. Nature 616, 66–72 (2023).
Wang, W. et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35, 2210854 (2023).
Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast reminiscence and neural computing. Nat. Commun. 12, 53 (2021).
Xue, F. et al. Large ferroelectric resistance switching managed by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 33, 2008709 (2021).
Yang, H. et al. Nonvolatile memristor based mostly on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci. China Inf. Sci. 62, 220404 (2019).
Si, M. et al. A novel scalable energy-efficient synaptic system: crossbar ferroelectric semiconductor junction. In IEEE Worldwide Electron Gadgets Assembly (IEDM), 6.6.1–6.6.4 (2019).
Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).
Wang, J. et al. Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. 66, 2288–2296 (2021).
Wang, L. et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Funct. Mater. 30, 2004609 (2020).
Liu, Okay. et al. An optoelectronic synapse based mostly on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).
Wang, S., Liu, X. & Zhou, P. The street for 2D semiconductors within the silicon age. Adv. Mater. 34, 2106886 (2022).
Solar, Y., Wang, S., Chen, X., Zhang, Z. & Zhou, P. Multioperation mode ferroelectric channel units for reminiscence and computation. Adv. Intell. Syst. 4, 2100198 (2022).
Rodriguez, J. R. et al. Electrical subject induced metallic habits in skinny crystals of ferroelectric α-In2Se3. Appl. Phys. Lett. https://doi.org/10.1063/5.0014945 (2020).
He, J., Stephenson, G. & Nakhmanson, S. Digital floor compensation of polarization in PbTiO3 movies. J. Appl. Phys. 112, 054112 (2012).
Fredrickson, Okay. D. & Demkov, A. A. Switchable conductivity on the ferroelectric interface: nonpolar oxides. Phys. Rev. B 91, 115126 (2015).
Quindeau, A. et al. Origin of tunnel electroresistance impact in PbTiO3-based multiferroic tunnel junctions. Phys. Rev. B 92, 035130 (2015).
Radaelli, G. et al. Massive room-temperature electroresistance in dual-modulated ferroelectric tunnel boundaries. Adv. Mater. 27, 2602–2607 (2015).
Liu, X., Tsymbal, E. Y. & Rabe, Okay. M. Polarization-controlled modulation doping of a ferroelectric from first ideas. Phys. Rev. B 97, 094107 (2018).
Kim, J. et al. Statement of tunable band hole and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).
Lu, X. & Yang, L. Stark impact of doped two-dimensional transition steel dichalcogenides. Appl. Phys. Lett. 111, 193104 (2017).
Li, C. et al. Band construction, ferroelectric instability, and spin–orbital coupling impact of bilayer α-In2Se3. J. Appl. Phys. 128, 234106 (2020).
Kim, W. Y. et al. Graphene–ferroelectric metadevices for nonvolatile reminiscence and reconfigurable logic-gate operations. Nat. Commun. 7, 10429 (2016).
Shuai, W.-J., Wang, R. & Zhao, J.-Z. Ferroelectric section transition pushed by anharmonic lattice mode coupling in two-dimensional monolayer In2Se3. Phys. Rev. B 107, 155427 (2023).
Wu, J. et al. Excessive tunnelling electroresistance in a ferroelectric van der Waals heterojunction through big barrier top modulation. Nat. Electron. 3, 466–472 (2020).
Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2021).
Ding, J., Shao, D.-F., Li, M., Wen, L.-W. & Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 126, 057601 (2021).
Lv, B. et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater. Horiz. 8, 1472–1480 (2021).
Wan, S. et al. Room-temperature ferroelectricity and a switchable diode impact in two-dimensional α-In2Se3 skinny layers. Nanoscale 10, 14885–14892 (2018).
Smidstrup, S. et al. QuantumATK: an built-in platform of digital and atomic-scale modelling instruments. J. Phys. Condens. Matter 32, 015901 (2020).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Kleinman, L. & Bylander, D. M. Efficacious type for mannequin pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982).
Monkhorst, H. J. & Pack, J. D. Particular level for Brillouin-zone integrations. Phys. Lett. B 13, 5188–5192 (1976).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based mostly on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Ferreira, L. G., Marques, M. & Teles, L. Okay. Slater half-occupation method revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Adv. 1, 032119 (2011).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H–Pu. J. Chem. Phys. 132, 154104 (2010).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).
Datta, S. (ed.) Cambridge Research in Semiconductor Physics and Microelectronic Engineering (Cambridge Univ. Press, 1995).
Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition steel dichalcogenides: from monolayer to bulk. NPK 2D Mater. Appl. 2, 6 (2018).
Wang, L., Pu, Y., Soh, A. Okay., Shi, Y. & Liu, S. Layers dependent dielectric properties of two dimensional hexagonal boron nitride nanosheets. AIP Adv. 6, 125126 (2016).