Wednesday, October 4, 2023
HomeNanotechnologyUltrahigh-printing-speed photoresists for additive manufacturing

Ultrahigh-printing-speed photoresists for additive manufacturing


  • Erkal, J. L. et al. 3D printed microfluidic units with built-in versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally managed supply of therapeutic brokers. Adv. Mater. 27, 6644–6650 (2015).

    Article 
    CAS 

    Google Scholar
     

  • von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).

    Article 

    Google Scholar
     

  • Xiong, W. et al. Laser-directed meeting of aligned carbon nanotubes in three dimensions for multifunctional machine fabrication. Adv. Mater. 28, 2002–2009 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. 3D printed micro-electrochemical vitality storage units: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of personalized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).

    Article 

    Google Scholar
     

  • Symes, M. D. et al. Built-in 3D-printed reactionware for chemical synthesis and evaluation. Nat. Chem. 4, 349–354 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lee, A. et al. 3D bioprinting of collagen to rebuild parts of the human coronary heart. Science 365, 482–487 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kawata, S., Solar, H. B., Tanaka, T. & Takada, Okay. Finer options for useful microdevices. Nature 412, 697–698 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L. J. Nanoimprint lithography: strategies and materials necessities. Adv. Mater. 19, 495–513 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tumbleston, J. R. et al. Steady liquid interface manufacturing of 3D objects. Science 347, 1349–1352 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a evaluate. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: towards high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm characteristic measurement. Nat. Commun. 4, 2061 (2013).

    Article 

    Google Scholar
     

  • Jin, F. et al. λ/30 inorganic options achieved by multi-photon 3D lithography. Nat. Commun. 13, 1357 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Portela, C. M. et al. Supersonic influence resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based mostly on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article 

    Google Scholar
     

  • Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).

    Article 

    Google Scholar
     

  • Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition fee. Choose. Categorical 21, 26244–26260 (2013).

    Article 

    Google Scholar
     

  • Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Malinauskas, M., Zukauskas, A., Bickauskaite, G., Gadonas, R. & Juodkazis, S. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Choose. Categorical 18, 10209–10221 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, L. A. et al. Scanning two-photon steady movement lithography for synthesis of high-resolution 3D microparticles. Choose. Categorical 26, 13543–13548 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ito, H. Chemical amplification resists for microlithography. Adv. Polym. Sci. 172, 37–245 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ito, H. Chemical amplification resists: inception, implementation in machine manufacture, and new developments. J. Polym. Sci. A 41, 3863–3870 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ito, H. Chemical amplification resists: Historical past and growth inside IBM. IBM J. Res. Dev. 41, 69–80 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bourzac, Okay. A large bid to etch tiny circuits. Nature 487, 419 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lithography roadmap on monitor. Nat. Photon. 4, 20 (2010).

  • Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Trikeriotis, M. et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J., Chakrabarty, S., Yu, M. & Ober, C. Okay. Steel oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).

    Article 

    Google Scholar
     

  • Xu, H. et al. Steel-organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 30, 4124–4133 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, H., Matsumoto, A., Akinaga, Okay., Takahashi, A. & Okada, T. Comparative research on emission traits of utmost ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005).

    Article 

    Google Scholar
     

  • Service, R. F. Optical lithography goes to extremes-and past. Science 293, 785–786 (2001).

    Article 
    CAS 

    Google Scholar
     

  • The shrinking chip. Nat. Photonics 3, 485 (2009).

  • Xu, H., Kosma, V., Giannelis, E. P. & Ober, C. Okay. In pursuit of Moore’s Regulation: polymer chemistry in motion. Polym. J. 50, 45–55 (2018).

    Article 

    Google Scholar
     

  • Rayleigh, L. On the idea of optical photos, with particular reference to the microscope. J. R. Microsc. Soc. 42, 167–195 (2011).


    Google Scholar
     

  • Wagner, C. & Harned, N. Lithography will get excessive. Nat. Photon. 4, 24–26 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sanders, D. P. Advances in patterning supplies for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pohlers, G., Scaiano, J. C., Step, E. & Sinta, R. Ionic vs free radical pathways within the direct and sensitized photochemistry of 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine: relevance for photoacid technology. J. Am. Chem. Soc. 121, 6167–6175 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Pohlers, G., Scaiano, J. C., Sinta, R., Brainard, R. & Pai, D. Mechanistic research of photoacid technology from substituted 4,6-bis(trichloromethyl)-1,3,5-triazines. Chem. Mater. 9, 1353–1361 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Methods to scale back oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lu, W. E., Dong, X. Z., Chen, W. Q., Zhao, Z. S. & Duan, X. M. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sheik-Bahae, M., Mentioned, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Delicate measurement of optical nonlinearities utilizing a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Sheik-Bahae, M., Mentioned, A. A. & Van Stryland, E. W. Excessive-sensitivity, single-beam n2 measurements. Choose. Lett. 14, 955–957 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical research of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Berland, Okay. et al. Van der Waals forces in density useful idea: a evaluate of the vdW-DF technique. Rep. Prog. Phys. 78, 066501 (2015).

    Article 

    Google Scholar
     

  • Ouyang, W. et al. Ultrafast 3D nanofabrication through digital holography. Nat. Commun. 14, 1716 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Saha, S. Okay. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, L. et al. Suppressing electrolyte-lithium steel reactivity through Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. B 136, B864–B871 (1964).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, 1133–1138 (1965).

    Article 

    Google Scholar
     

  • Andzelm, J., Kolmel, C. & Klamt, A. Incorporation of solvent results into density useful calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Klamt, A., Jonas, V., Burger, T. & Lohrenz, J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mullins, E. et al. Sigma-profile database for utilizing COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 45, 4389–4415 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Mullins, E., Liu, Y. A., Ghaderi, A. & Quick, S. D. Sigma profile database for predicting strong solubility in pure and blended solvent mixtures for natural pharmacological compounds with COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 47, 1707–1725 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Delley, B. An all-electron numerical technique for fixing the native density useful for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Delley, B. From molecules to solids with the DMol3 method. J. Chem. Phys. 113, 7756–7764 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. & Truhlar, D. G. A brand new native density useful for main-group thermochemistry, transition steel bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Adamo, C. & Barone, V. Towards dependable density useful strategies with out adjustable parameters: the PBE0 mannequin. J. Chem. Phys. 110, 6158–6170 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Ernzerhof, M. & Scuseria, G. E. Evaluation of the Perdew–Burke–Ernzerhof exchange-correlation useful. J. Chem. Phys. 110, 5029–5036 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. Correct Coulomb-fitting foundation units for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Common solvation mannequin based mostly on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16 Revision C (Gaussian, 2016).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments