Erkal, J. L. et al. 3D printed microfluidic units with built-in versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).
Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally managed supply of therapeutic brokers. Adv. Mater. 27, 6644–6650 (2015).
von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).
Xiong, W. et al. Laser-directed meeting of aligned carbon nanotubes in three dimensions for multifunctional machine fabrication. Adv. Mater. 28, 2002–2009 (2016).
Zhang, W. et al. 3D printed micro-electrochemical vitality storage units: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).
Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of personalized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).
Symes, M. D. et al. Built-in 3D-printed reactionware for chemical synthesis and evaluation. Nat. Chem. 4, 349–354 (2012).
Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).
Lee, A. et al. 3D bioprinting of collagen to rebuild parts of the human coronary heart. Science 365, 482–487 (2019).
Kawata, S., Solar, H. B., Tanaka, T. & Takada, Okay. Finer options for useful microdevices. Nature 412, 697–698 (2001).
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).
Guo, L. J. Nanoimprint lithography: strategies and materials necessities. Adv. Mater. 19, 495–513 (2007).
Tumbleston, J. R. et al. Steady liquid interface manufacturing of 3D objects. Science 347, 1349–1352 (2015).
Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a evaluate. J. Vac. Sci. Technol. B 23, 877–894 (2005).
Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: towards high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).
Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm characteristic measurement. Nat. Commun. 4, 2061 (2013).
Jin, F. et al. λ/30 inorganic options achieved by multi-photon 3D lithography. Nat. Commun. 13, 1357 (2022).
Portela, C. M. et al. Supersonic influence resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).
Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based mostly on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).
Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition fee. Choose. Categorical 21, 26244–26260 (2013).
Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).
Malinauskas, M., Zukauskas, A., Bickauskaite, G., Gadonas, R. & Juodkazis, S. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Choose. Categorical 18, 10209–10221 (2010).
Shaw, L. A. et al. Scanning two-photon steady movement lithography for synthesis of high-resolution 3D microparticles. Choose. Categorical 26, 13543–13548 (2018).
Ito, H. Chemical amplification resists for microlithography. Adv. Polym. Sci. 172, 37–245 (2005).
Ito, H. Chemical amplification resists: inception, implementation in machine manufacture, and new developments. J. Polym. Sci. A 41, 3863–3870 (2003).
Ito, H. Chemical amplification resists: Historical past and growth inside IBM. IBM J. Res. Dev. 41, 69–80 (1997).
Bourzac, Okay. A large bid to etch tiny circuits. Nature 487, 419 (2012).
Lithography roadmap on monitor. Nat. Photon. 4, 20 (2010).
Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).
Trikeriotis, M. et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).
Jiang, J., Chakrabarty, S., Yu, M. & Ober, C. Okay. Steel oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).
Xu, H. et al. Steel-organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 30, 4124–4133 (2018).
Tanaka, H., Matsumoto, A., Akinaga, Okay., Takahashi, A. & Okada, T. Comparative research on emission traits of utmost ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005).
Service, R. F. Optical lithography goes to extremes-and past. Science 293, 785–786 (2001).
The shrinking chip. Nat. Photonics 3, 485 (2009).
Xu, H., Kosma, V., Giannelis, E. P. & Ober, C. Okay. In pursuit of Moore’s Regulation: polymer chemistry in motion. Polym. J. 50, 45–55 (2018).
Rayleigh, L. On the idea of optical photos, with particular reference to the microscope. J. R. Microsc. Soc. 42, 167–195 (2011).
Wagner, C. & Harned, N. Lithography will get excessive. Nat. Photon. 4, 24–26 (2010).
Sanders, D. P. Advances in patterning supplies for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).
Pohlers, G., Scaiano, J. C., Step, E. & Sinta, R. Ionic vs free radical pathways within the direct and sensitized photochemistry of 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine: relevance for photoacid technology. J. Am. Chem. Soc. 121, 6167–6175 (1999).
Pohlers, G., Scaiano, J. C., Sinta, R., Brainard, R. & Pai, D. Mechanistic research of photoacid technology from substituted 4,6-bis(trichloromethyl)-1,3,5-triazines. Chem. Mater. 9, 1353–1361 (1997).
Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Methods to scale back oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).
Lu, W. E., Dong, X. Z., Chen, W. Q., Zhao, Z. S. & Duan, X. M. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011).
Sheik-Bahae, M., Mentioned, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Delicate measurement of optical nonlinearities utilizing a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).
Sheik-Bahae, M., Mentioned, A. A. & Van Stryland, E. W. Excessive-sensitivity, single-beam n2 measurements. Choose. Lett. 14, 955–957 (1989).
Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical research of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).
Berland, Okay. et al. Van der Waals forces in density useful idea: a evaluate of the vdW-DF technique. Rep. Prog. Phys. 78, 066501 (2015).
Ouyang, W. et al. Ultrafast 3D nanofabrication through digital holography. Nat. Commun. 14, 1716 (2023).
Saha, S. Okay. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).
Sheng, L. et al. Suppressing electrolyte-lithium steel reactivity through Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. B 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, 1133–1138 (1965).
Andzelm, J., Kolmel, C. & Klamt, A. Incorporation of solvent results into density useful calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).
Klamt, A., Jonas, V., Burger, T. & Lohrenz, J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998).
Mullins, E. et al. Sigma-profile database for utilizing COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 45, 4389–4415 (2006).
Mullins, E., Liu, Y. A., Ghaderi, A. & Quick, S. D. Sigma profile database for predicting strong solubility in pure and blended solvent mixtures for natural pharmacological compounds with COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 47, 1707–1725 (2008).
Delley, B. An all-electron numerical technique for fixing the native density useful for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).
Delley, B. From molecules to solids with the DMol3 method. J. Chem. Phys. 113, 7756–7764 (2000).
Zhao, Y. & Truhlar, D. G. A brand new native density useful for main-group thermochemistry, transition steel bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Adamo, C. & Barone, V. Towards dependable density useful strategies with out adjustable parameters: the PBE0 mannequin. J. Chem. Phys. 110, 6158–6170 (1999).
Ernzerhof, M. & Scuseria, G. E. Evaluation of the Perdew–Burke–Ernzerhof exchange-correlation useful. J. Chem. Phys. 110, 5029–5036 (1999).
Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Weigend, F. Correct Coulomb-fitting foundation units for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Common solvation mannequin based mostly on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Frisch, M. J. et al. Gaussian 16 Revision C (Gaussian, 2016).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).