Friday, June 2, 2023
HomeNanotechnologyTunable phononic coupling in excitonic quantum emitters

Tunable phononic coupling in excitonic quantum emitters


  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 

    Google Scholar
     

  • Lee, Ok. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Vivoli, V. C., Barnea, T., Galland, C. & Sangouard, N. Proposal for an optomechanical Bell check. Phys. Rev. Lett. 116, 070405 (2016).

    Article 

    Google Scholar
     

  • Tarrago Velez, S., Sudhir, V., Sangouard, N. & Galland, C. Bell correlations between gentle and vibration at ambient circumstances. Sci. Adv. 6, eabb0260 (2020).

    Article 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bienfait, A. et al. Phonon-mediated quantum state switch and distant qubit entanglement. Science 364, 368–371 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Toninelli, C. et al. Single natural molecules for photonic quantum applied sciences. Nat. Mater. 20, 1615–1628 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Aharonovich, I. & Toth, M. Quantum emitters in two dimensions. Science 358, 170–171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Interlayer respiratory and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Palacios-Berraquero, C. et al. Massive-scale quantum-emitter arrays in atomically skinny semiconductors. Nat. Commun. 8, 15093 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Parto, Ok., Azzam, S. I., Banerjee, Ok. & Moody, G. Defect and pressure engineering of monolayer WSe2 permits site-controlled single-photon emission as much as 150 Ok. Nat. Commun. 12, 3585 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered supplies with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article 

    Google Scholar
     

  • Sortino, L. et al. Vivid single photon emitters with enhanced quantum effectivity in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kundrotas, J. et al. Impurity-induced Huang–Rhys consider beryllium δ-doped GaAs/AlAs a number of quantum wells: fractional-dimensional house strategy. Semicond. Sci. Technol. 22, 1070–1076 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Grosso, G. et al. Low-temperature electron–phonon interplay of quantum emitters in hexagonal boron nitride. ACS Photonics 7, 1410–1417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, D. et al. Exciton–phonon coupling energy in single-layer MoSe2 at room temperature. Nat. Commun. 12, 954 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ergeçen, E. et al. Magnetically brightened darkish electron–phonon certain states in a van der Waals antiferromagnet. Nat. Commun. 13, 98 (2022).

    Article 

    Google Scholar
     

  • Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Altaiary, M. M. et al. Electrically switchable intervalley excitons with robust two-phonon scattering in bilayer WSe2. Nano Lett. 22, 1829–1835 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z., Chiu, Y. H., Honz, Ok., Mak, Ok. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. https://doi.org/10.1021/acs.nanolett.7b03667 (2018).

  • Luo, Y., Liu, N., Kim, B., Hone, J. & Strauf, S. Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119–5126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Spatially oblique intervalley excitons in bilayer WSe2. Phys. Rev. B 105, L041409 (2022).

  • Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Desai, S. B. et al. Pressure-induced oblique to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Rising photoluminescence from the dark-exciton phonon duplicate in monolayer WSe2. Nat. Commun. 10, 2469 (2019).

    Article 

    Google Scholar
     

  • Paradisanos, I. et al. Environment friendly phonon cascades in WSe2 monolayers. Nat. Commun. 12, 538 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rivera, P. et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 12, 871 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jones, A. M. et al. Spin-layer locking results in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. https://doi.org/10.1038/nphys2848 (2014).

  • Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Pressure-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lindlau, J. et al. The function of momentum-dark excitons within the elementary optical response of bilayer WSe2. Nat. Commun. https://doi.org/10.1038/s41467-018-04877-3 (2018).

  • Aslan, B., Deng, M., Brongersma, M. L. & Heinz, T. F. Strained bilayer WSe2 with decreased exciton–phonon coupling. Phys. Rev. B 101, 15305 (2020).

  • Baek, H. et al. Extremely energy-tunable quantum gentle from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. https://doi.org/10.1126/sciadv.aba1830 (2020).

  • Zhang, S. et al. Defect construction of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article 

    Google Scholar
     

  • Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Dysfunction in van der Waals heterostructures of 2D supplies. Nat. Mater. 18, 541–549 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. J. et al. Level defects and localized excitons in 2D WSe2. ACS Nano 13, 6050–6059 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, J.-Y., Pan, J., Lin, H., Bansil, A. & Yan, Q. Antisite defect qubits in monolayer transition steel dichalcogenides. Nat. Commun. 13, 492 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barati, F. et al. Vibronic exciton–phonon states in stack-engineered van der Waals heterojunction photodiodes. Nano Lett. 22, 5751–5758 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Grzeszczyk, M. et al. Respiration modes in few-layer MoTe2 activated by h-BN encapsulation. Appl. Phys. Lett. 116, 191601 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yeo, I. et al. Pressure-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106–110 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 https://doi.org/10.1038/s41565-019-0559-y (2019).

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition steel dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    Article 

    Google Scholar
     

  • Anderson, M. D. et al. Two-color pump–probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Barzanjeh, S. et al. Optomechanics for quantum applied sciences. Nat. Phys. 18, 15–24 (2021).

  • Giannozzi, P. et al. Quantum Espresso: a modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

  • Grimme, S. Semiempirical GGA-type density practical constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments