Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Lee, Ok. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).
Vivoli, V. C., Barnea, T., Galland, C. & Sangouard, N. Proposal for an optomechanical Bell check. Phys. Rev. Lett. 116, 070405 (2016).
Tarrago Velez, S., Sudhir, V., Sangouard, N. & Galland, C. Bell correlations between gentle and vibration at ambient circumstances. Sci. Adv. 6, eabb0260 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
Bienfait, A. et al. Phonon-mediated quantum state switch and distant qubit entanglement. Science 364, 368–371 (2019).
Toninelli, C. et al. Single natural molecules for photonic quantum applied sciences. Nat. Mater. 20, 1615–1628 (2021).
Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).
Aharonovich, I. & Toth, M. Quantum emitters in two dimensions. Science 358, 170–171 (2017).
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
Zhao, Y. et al. Interlayer respiratory and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).
Palacios-Berraquero, C. et al. Massive-scale quantum-emitter arrays in atomically skinny semiconductors. Nat. Commun. 8, 15093 (2017).
Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
Parto, Ok., Azzam, S. I., Banerjee, Ok. & Moody, G. Defect and pressure engineering of monolayer WSe2 permits site-controlled single-photon emission as much as 150 Ok. Nat. Commun. 12, 3585 (2021).
Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered supplies with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).
Sortino, L. et al. Vivid single photon emitters with enhanced quantum effectivity in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).
Kundrotas, J. et al. Impurity-induced Huang–Rhys consider beryllium δ-doped GaAs/AlAs a number of quantum wells: fractional-dimensional house strategy. Semicond. Sci. Technol. 22, 1070–1076 (2007).
Grosso, G. et al. Low-temperature electron–phonon interplay of quantum emitters in hexagonal boron nitride. ACS Photonics 7, 1410–1417 (2020).
Li, D. et al. Exciton–phonon coupling energy in single-layer MoSe2 at room temperature. Nat. Commun. 12, 954 (2021).
Ergeçen, E. et al. Magnetically brightened darkish electron–phonon certain states in a van der Waals antiferromagnet. Nat. Commun. 13, 98 (2022).
Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).
Altaiary, M. M. et al. Electrically switchable intervalley excitons with robust two-phonon scattering in bilayer WSe2. Nano Lett. 22, 1829–1835 (2022).
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).
Wang, Z., Chiu, Y. H., Honz, Ok., Mak, Ok. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. https://doi.org/10.1021/acs.nanolett.7b03667 (2018).
Luo, Y., Liu, N., Kim, B., Hone, J. & Strauf, S. Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119–5126 (2020).
Huang, Z. et al. Spatially oblique intervalley excitons in bilayer WSe2. Phys. Rev. B 105, L041409 (2022).
Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).
Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).
Desai, S. B. et al. Pressure-induced oblique to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).
Jin, C. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).
Li, Z. et al. Rising photoluminescence from the dark-exciton phonon duplicate in monolayer WSe2. Nat. Commun. 10, 2469 (2019).
Paradisanos, I. et al. Environment friendly phonon cascades in WSe2 monolayers. Nat. Commun. 12, 538 (2021).
Rivera, P. et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 12, 871 (2021).
Jones, A. M. et al. Spin-layer locking results in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. https://doi.org/10.1038/nphys2848 (2014).
Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Pressure-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).
Lindlau, J. et al. The function of momentum-dark excitons within the elementary optical response of bilayer WSe2. Nat. Commun. https://doi.org/10.1038/s41467-018-04877-3 (2018).
Aslan, B., Deng, M., Brongersma, M. L. & Heinz, T. F. Strained bilayer WSe2 with decreased exciton–phonon coupling. Phys. Rev. B 101, 15305 (2020).
Baek, H. et al. Extremely energy-tunable quantum gentle from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. https://doi.org/10.1126/sciadv.aba1830 (2020).
Zhang, S. et al. Defect construction of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).
Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Dysfunction in van der Waals heterostructures of 2D supplies. Nat. Mater. 18, 541–549 (2019).
Zheng, Y. J. et al. Level defects and localized excitons in 2D WSe2. ACS Nano 13, 6050–6059 (2019).
Tsai, J.-Y., Pan, J., Lin, H., Bansil, A. & Yan, Q. Antisite defect qubits in monolayer transition steel dichalcogenides. Nat. Commun. 13, 492 (2022).
Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).
Barati, F. et al. Vibronic exciton–phonon states in stack-engineered van der Waals heterojunction photodiodes. Nano Lett. 22, 5751–5758 (2022).
Grzeszczyk, M. et al. Respiration modes in few-layer MoTe2 activated by h-BN encapsulation. Appl. Phys. Lett. 116, 191601 (2020).
Yeo, I. et al. Pressure-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106–110 (2014).
Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 https://doi.org/10.1038/s41565-019-0559-y (2019).
Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition steel dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).
Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).
Anderson, M. D. et al. Two-color pump–probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).
Barzanjeh, S. et al. Optomechanics for quantum applied sciences. Nat. Phys. 18, 15–24 (2021).
Giannozzi, P. et al. Quantum Espresso: a modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Grimme, S. Semiempirical GGA-type density practical constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).