Bergholtz, E. J., Budich, J. C. & Kunst, F. Ok. Distinctive topology of non-Hermitian programs. Rev. Mod. Phys. 93, 015005 (2021).
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian programs. Phys. Rev. Lett. 121, 086803 (2018).
Kawabata, Ok., Shiozaki, Ok., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).
Gong, Z. et al. Topological phases of non-Hermitian programs. Phys. Rev. X 8, 031079 (2018).
Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).
Zhou, H. et al. Commentary of bulk Fermi arc and polarization half cost from paired distinctive factors. Science 359, 1009–1012 (2018).
Carlström, J. & Bergholtz, E. J. Distinctive hyperlinks and twisted Fermi ribbons in non-Hermitian programs. Phys. Rev. A 98, 042114 (2018).
Xiao, L. et al. Commentary of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).
Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Minganti, F., Miranowicz, A., Chhajlany, R. W. & Nori, F. Quantum distinctive factors of non-Hermitian Hamiltonians and Liouvillians: the results of quantum jumps. Phys. Rev. A 100, 062131 (2019).
Minganti, F., Miranowicz, A., Chhajlany, R. W., Arkhipov, I. I. & Nori, F. Hybrid-Liouvillian formalism connecting distinctive factors of non-Hermitian Hamiltonians and Liouvillians through postselection of quantum trajectories. Phys. Rev. A 101, 062112 (2020).
Lee, T. E., Reiter, F. & Moiseyev, N. Entanglement and spin squeezing in non-Hermitian part transitions. Phys. Rev. Lett. 113, 250401 (2014).
Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling distinctive factors: precise evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).
Stalhammar, M. & Bergholtz, E. J. Classification of remarkable nodal topologies protected by PT symmetry. Phys. Rev. B 104, L201104 (2021).
Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524 (2014).
Peng, B. et al. Parity-time symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).
Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic constructions. Phys. Rev. Lett. 106, 213901 (2011).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single mode laser by parity–time symmetry breaking. Science 346, 972 (2014).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975 (2014).
Chen, W., Özdemir, S. Ok., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192 (2017).
Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70 (2019).
Fernández-Alcázar, L. J., Kononchuk, R. & Kottos, T. Enhanced power harvesting close to distinctive factors in programs with (pseudo-) PT-symmetry. Commun. Phys. 4, 79 (2021).
Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).
Zhang, W. et al. Commentary of non-Hermitian topology with nonunitary dynamics of solid-state spins. Phys. Rev. Lett. 127, 090501 (2021).
Abbasi, M., Chen, W., Naghiloo, M., Joglekar, Y. N. & Murch, Ok. W. Topological quantum state management by way of exceptional-point proximity. Phys. Rev. Lett. 128, 160401 (2022).
Liu, W., Wu, Y., Duan, C.-Ok., Rong, X. & Du, J. Dynamically encircling an distinctive level in an actual quantum system. Phys. Rev. Lett. 126, 170506 (2021).
Wu, Y. et al. Commentary of parity-time symmetry breaking in a single-spin system. Science 346, 878–880 (2019).
Ding, L. et al. Experimental dedication of PT-symmetric distinctive factors in a single trapped ion. Phys. Rev. Lett. 126, 083604 (2021).
Ding, Ok., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of a number of distinctive factors and their experimental realization. Phys. Rev. X 6, 021007 (2016).
Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected higher-order distinctive factors and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).
Mandal, I. & Bergholtz, E. J. Symmetry and higher-order distinctive factors. Phys. Rev. Lett. 127, 186601 (2021).
Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187 (2017).
Zeng, C. et al. Extremely-sensitive passive wi-fi sensor exploiting high-order distinctive level for weakly coupling detection. New J. Phys. 23, 063008 (2021).
Wang, X. G., Guo, G. H. & Berakdar, J. Enhanced sensitivity at magnetic high-order distinctive factors and topological power switch in magnonic planar waveguides. Phys. Rev. Appl. 15, 034050 (2021).
Zeng, C. et al. Enhanced sensitivity at high-order distinctive factors in a passive wi-fi sensing system. Choose. Specific 27, 27562 (2019).
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).
Tang, W. et al. Distinctive nexus with a hybrid topological invariant. Science 370, 1077 (2020).
Ding, Ok., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).
Yang, Z., Schnyder, A. P., Hu, J. & Chiu, C.-Ok. Fermion doubling theorems in two-dimensional non-Hermitian programs for Fermi factors and distinctive factors. Phys. Rev. Lett. 126, 086401 (2021).
Yu, Y. et al. Experimental unsupervised studying of non-Hermitian knotted phases with solid-state spins. NPJ Quantum Inf. 8, 116 (2022).
Zhong, Q. et al. Sensing with distinctive surfaces with a purpose to mix sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).
Qin, G.-Q. et al. Experimental realization of sensitivity enhancement and suppression with distinctive surfaces. Laser Photonics Rev. 15, 2000569 (2021).
Soleymani, S. et al. Chiral and degenerate excellent absorption on distinctive surfaces. Nat. Commun. 13, 599 (2022).
Tang, W., Ding, Ok. & Ma, G. Direct measurement of topological properties of an distinctive parabola. Phys. Rev. Lett. 127, 034301 (2021).
Ding, Ok., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic distinctive level. Phys. Rev. Lett. 121, 085702 (2018).
Lau, H.-Ok. & Clerk, A. A. Elementary limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).
Wiersig, J. Evaluate of remarkable point-based sensors. Photon. Res. 8, 1457–1467 (2020).
Yu, S. et al. Experimental investigation of quantum PT-enhanced sensor. Phys. Rev. Lett. 125, 240506 (2020).
Yao, S., Yan, Z. & Wang, Z. Topological invariants of Floquet programs: common formulation, particular properties, and Floquet topological defects. Phys. Rev. B 96, 195303 (2017).
Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).
Tang, W., Ding, Ok. & Ma, G. Realization and topological properties of third-order distinctive strains embedded in distinctive surfaces. Nat. Commun. 14, 6660 (2023).