Feynman R. There’s loads of room on the backside. Boca Raton: CRC Press; 2018. p. 63–76.
Drexler KE. Engines of creation. Anchor books, 1986.
Qi B, Wang C, Ding J, Tao W. Editorial: purposes of nanobiotechnology in pharmacology. Entrance Pharmacol. 2019; 10.
Jain KK. 1.45—Nanobiotechnology. In: Moo-Younger M, editor. Complete biotechnology. 2nd ed. Tutorial Press: Burlington; 2011. p. 599–614.
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang C-M. Synthesis and organic characterization of phyto-fabricated silver nanoparticles from Azadirachta Indica. J Biomed Nanotech. 2022;18:2022–57. https://doi.org/10.1166/jbn.2022.3402.
Dutt Y, Pandey RP, Dutt M, Gupta A, Arpana V, Raj VS, Chang C-M, Priyadarshini A. Silver nanoparticles phyto-fabricated by Azadirachta Indica : anti-cancer, apoptotic, and wound therapeutic properties. Antibiotics. 2022. https://doi.org/10.3390/antibiotics12010121.
Kaur Ok, Thombre R. Chapter 1—Nanobiotechnology: strategies, purposes, and future prospects. In: Ghosh S, Webster TJ, editors. Nanobiotechnology. Elsevier; 2021. p. 1–20.
Sprint DK, Panik RK, Sahu AK, Tripathi V, Sprint DK, Panik RK, Sahu AK, Tripathi V. Function of nanobiotechnology in drug discovery, improvement and molecular diagnostic; IntechOpen, 2020; ISBN 978-1-78985-978-2.
Neel EAA, Bozec L, Perez RA, Kim H-W, Knowles JC. Nanotechnology in dentistry: prevention, prognosis, and remedy. Int J Nanomed. 2015;10:6371–94. https://doi.org/10.2147/IJN.S86033.
Moeinzadeh S, Jabbari E. Nanoparticles and their purposes. In: Bhushan B, editor. Springer handbook of nanotechnology. Berlin, Heidelberg: Springer Handbooks; Springer; 2017. p. 335–61.
Dutt Y, Dhiman R, Singh T, Vibhuti A, Gupta A, Pandey RP, Raj VS, Chang C-M, Priyadarshini A. The affiliation between biofilm formation and antimicrobial resistance with doable ingenious bio-remedial approaches. Antibiotics. 2022;11:930. https://doi.org/10.3390/antibiotics11070930.
Sanità G, Carrese B, Lamberti A. Nanoparticle floor functionalization: methods to enhance biocompatibility and mobile internalization. Entrance Mol Biosci. 2020;7. https://doi.org/10.3389/fmolb.2020.587012.
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Rising use of nanoparticles in prognosis and therapy of breast most cancers. Lancet Oncol. 2006;7:657–67. https://doi.org/10.1016/S1470-2045(06)70793-8.
Wang B, Wu W, Lu H, Wang Z, Xin H. Enhanced anti-tumor of Pep-1 modified superparamagnetic iron oxide/PTX loaded polymer nanoparticles. Entrance Pharmacol. 2019;9:1556. https://doi.org/10.3389/fphar.2018.01556.
Gao N, Nie J, Wang H, Xing C, Mei L, Xiong W, Zeng X, Peng Z. A flexible platform primarily based on black phosphorus nanosheets with enhanced stability for most cancers synergistic remedy. J Biomed Nanotechnol. 2018;14:1883–97. https://doi.org/10.1166/jbn.2018.2632.
Wang S-B, Ma Y-Y, Chen X-Y, Zhao Y-Y, Mou X-Z. Ceramide-graphene oxide nanoparticles improve cytotoxicity and reduce HCC xenograft improvement: a novel method for focused most cancers remedy. Entrance Pharmacol. 2019;10:69. https://doi.org/10.3389/fphar.2019.00069.
Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh ME-A, Yang DC. Biosynthesis, characterization, and antimicrobial purposes of silver nanoparticles. Int J Nanomed. 2015;10:2567–77. https://doi.org/10.2147/IJN.S72313.
Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf AR, Rajesh Ok, Kyzas GZ. Inexperienced synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal exercise. J Mol Struct. 2020;1211: 128107. https://doi.org/10.1016/j.molstruc.2020.128107.
Murali M, Thampy A, Anandan S, Aiyaz M, Shilpa N, Singh SB, Gowtham HG, Ramesh AM, Rahdar A, Kyzas GZ. Competent antioxidant and antiglycation properties of zinc oxide nanoparticles (ZnO-NPs) phyto-fabricated from aqueous leaf extract of Boerhaavia Erecta L. Environ Sci Pollut Res. 2023. https://doi.org/10.1007/s11356-023-26331-8.
Pagar Ok, Chavan Ok, Kasav S, Basnet P, Rahdar A, Kataria N, Oza R, Abhale Y, Ravindran B, Pardeshi O, et al. Bio-inspired synthesis of CdO nanoparticles utilizing Citrus Limetta peel extract and their numerous biomedical purposes. J Drug Deliv Sci Technol. 2023;82: 104373. https://doi.org/10.1016/j.jddst.2023.104373.
Dabhane H, Ghotekar S, Zate M, Lin Ok-YA, Rahdar A, Ravindran B, Bahiram D, Ingale C, Khairnar B, Sali D, et al. A novel method towards the bio-inspired synthesis of CuO nanoparticles for phenol degradation and antimicrobial purposes. Biomass Convers Biorefinery. 2023. https://doi.org/10.1007/s13399-023-03954-y.
Shava B, Ayodeji FD, Rahdar A, Iqbal HMN, Bilal M. Magnetic nanoparticles-based methods for multifaceted biomedical purposes. J Drug Deliv Sci Technol. 2022;74: 103616. https://doi.org/10.1016/j.jddst.2022.103616.
Nowack B, Krug HF, Top M. 120 Years of nanosilver historical past: implications for coverage makers. Environ Sci Technol. 2011;45:1177–83. https://doi.org/10.1021/es103316q.
Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N, Nasiri S. Software of magnetic nanoparticles in good enzyme immobilization. Biotechnol Lett. 2016;38:223–33. https://doi.org/10.1007/s10529-015-1977-z.
Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda Ok, Czupryn M, Antos-Bielska M, Szemraj J, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid-modified silver nanoparticles for wound therapeutic: the significance of measurement. Int J Nanomed. 2018;13:991–1007. https://doi.org/10.2147/IJN.S154797.
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, de Lima R. Affect of the capping of biogenic silver nanoparticles on their toxicity and mechanism of motion in direction of sclerotinia sclerotiorum. J Nanobiotechnol. 2021;19:53. https://doi.org/10.1186/s12951-021-00797-5.
Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai R. Antibacterial efficacy of biosynthesized silver nanoparticles in opposition to Enterococcus Faecalis biofilm: an in vitro research. Contemp Clin Dent. 2018;9:237. https://doi.org/10.4103/ccd.ccd_828_17.
Greenfeld JI, Sampath L, Popilskis SJ, Brunnert SR, Stylianos S, Modak S. Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine-impregnated central venous catheters implanted in swine. Crit Care Med. 1995;23:894–900. https://doi.org/10.1097/00003246-199505000-00018.
Barapatre A, Aadil KR, Jha H. Synergistic antibacterial and antibiofilm exercise of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour Bioprocess. 2016;3:8. https://doi.org/10.1186/s40643-016-0083-y.
Kalishwaralal Ok, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas Aeruginosa and Staphylococcus Epidermidis. Colloids Surf B Biointerfaces. 2010;79:340–4. https://doi.org/10.1016/j.colsurfb.2010.04.014.
Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol Biol Med. 2012;8:916–24. https://doi.org/10.1016/j.nano.2011.11.007.
Zhang W, Qiao X, Chen J. Synthesis and characterization of silver nanoparticles in AOT microemulsion system. Chem Phys. 2006;330:495–500. https://doi.org/10.1016/j.chemphys.2006.09.029.
Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles focus and time dependently enhanced progress of human hepatocarcinoma cell line (Hep-G2). J Nanomater. 2015;2015: e451405. https://doi.org/10.1155/2015/451405.
Choi Y, Ryu GH, Min SH, Lee BR, Track MH, Lee Z, Kim B-S. Interface-controlled synthesis of heterodimeric silver-carbon nanoparticles derived from polysaccharides. ACS Nano. 2014;8:11377–85. https://doi.org/10.1021/nn504287q.
Rizzello L, Pompa PP. Nanosilver-based antibacterial medication and gadgets: mechanisms, methodological drawbacks, and pointers. Chem Soc Rev. 2014;43:1501–18. https://doi.org/10.1039/c3cs60218d.
Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles utilizing microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol. 2016;7: 015018. https://doi.org/10.1088/2043-6262/7/1/015018.
Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(ethylene glycol)–polylactide micelles for most cancers remedy. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00202.
Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug supply purposes in most cancers and neurodegenerative dysfunction therapies. J Funct Biomater. 2019;10:4. https://doi.org/10.3390/jfb10010004.
Gouthami Ok, Lakshminarayana L, Faniband B, Veeraraghavan V, Bilal M, Bhargava RN, Ferreira LFR, Rahdar A, Kakkameli S, Mulla SI. 1—Introduction to polymeric nanomaterials. In: Ali N, Bilal M, Khan A, Nguyen TA, Gupta RK, editors. Sensible polymer nanocomposites; micro and nano applied sciences. Elsevier; 2023. p. 3–25.
Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-based hybrid nanoarchitectures for most cancers remedy purposes. Polymers. 2022;14:3027. https://doi.org/10.3390/polym14153027.
Rajput IB, Tareen FK, Khan AU, Ahmed N, Khan MFA, Shah KU, Rahdar A, Díez-Pascual AM. Fabrication and in vitro analysis of chitosan-gelatin primarily based aceclofenac loaded scaffold. Int J Biol Macromol. 2023;224:223–32. https://doi.org/10.1016/j.ijbiomac.2022.10.118.
Xu M, Liu J, Xu X, Liu S, Peterka F, Ren Y, Zhu X. Synthesis and comparative organic properties of Ag-PEG nanoparticles with tunable morphologies from janus to multi-core shell construction. Supplies. 2018;11:1787. https://doi.org/10.3390/ma11101787.
Wang F, Bao X, Fang A, Li H, Zhou Y, Liu Y, Jiang C, Wu J, Track X. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion advanced: a possible therapeutic ocular drug-delivery system. Entrance Pharmacol. 2018;9:91. https://doi.org/10.3389/fphar.2018.00091.
Wang F, Xiao W, Elbahnasawy MA, Bao X, Zheng Q, Gong L, Zhou Y, Yang S, Fang A, Farag MMS, et al. Optimization of the linker size of mannose-cholesterol conjugates for enhanced MRNA supply to dendritic cells by liposomes. Entrance Pharmacol. 2018;9:980. https://doi.org/10.3389/fphar.2018.00980.
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their focused supply purposes. Molecules. 2020;25:2193. https://doi.org/10.3390/molecules25092193.
Allen TM, Cullis PR. Liposomal drug supply methods: from idea to scientific purposes. Adv Drug Deliv Rev. 2013;65:36–48. https://doi.org/10.1016/j.addr.2012.09.037.
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Software of liposomes in medication and drug supply. Artif Cells Nanomed Biotechnol. 2016;44:381–91. https://doi.org/10.3109/21691401.2014.953633.
Buse J, El-Aneed A. Properties, engineering and purposes of lipid-based nanoparticle drug-delivery methods: present analysis and advances. Nanomed. 2010;5:1237–60. https://doi.org/10.2217/nnm.10.107.
Zhang H, Wang G, Yang H. Drug supply methods for differential launch together remedy. Skilled Opin Drug Deliv. 2011;8:171–90. https://doi.org/10.1517/17425247.2011.547470.
Hsu H-J, Bugno J, Lee S-R, Hong S. Dendrimer-based nanocarriers: a flexible platform for drug supply. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017. https://doi.org/10.1002/wnan.1409.
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug supply in most cancers remedy. Mol J Synth Chem Nat Prod Chem. 2017;22:1401. https://doi.org/10.3390/molecules22091401.
Patel H, Patel P. Dendrimer purposes—a overview. Int J Pharm Bio Sci. 2013;4:454–63.
Maciejewski M. Ideas of trapping topologically by shell molecules. J Macromol Sci. 1982;17:689–703.
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Entrance Immunol. 2017. https://doi.org/10.3389/fimmu.2017.01603.
Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S. Nanobodies and their potential purposes. Nanomedicine. 2013;8:1013–26. https://doi.org/10.2217/nnm.13.86.
Bao G, Tang M, Zhao J, Zhu X. Nanobody: a promising toolkit for molecular imaging and illness remedy. EJNMMI Res. 2021;11:6. https://doi.org/10.1186/s13550-021-00750-5.
Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm impeding AgNPs goal pores and skin carcinoma by inducing mitochondrial membrane depolarization mediated by ROS manufacturing. ACS Appl Mater Interfaces. 2016;8:28538–53. https://doi.org/10.1021/acsami.6b11391.
Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi Ok, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, et al. Synthesis of silver nanoparticles utilizing dioscorea bulbifera tuber extract and analysis of its synergistic potential together with antimicrobial brokers. Int J Nanomed. 2012;7:483–96. https://doi.org/10.2147/IJN.S24793.
Hindi KM, Ditto AJ, Panzner MJ, Medvetz DA, Han DS, Hovis CE, Hilliard JK, Taylor JB, Yun YH, Cannon CL, et al. The antimicrobial efficacy of sustained launch silver-carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo research. Biomaterials. 2009;30:3771–9. https://doi.org/10.1016/j.biomaterials.2009.03.044.
Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial evaluation of chitosancoated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomed. 2012;7:1805–18. https://doi.org/10.2147/IJN.S28077.
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic foundation of antimicrobial actions of silver nanoparticles. Entrance Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.01831.
Gupta A, Maynes M, Silver S. Results of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol. 1998;64:5042–5.
Kim T, Braun GB, She Z, Hussain S, Ruoslahti E, Sailor MJ. Composite porous silicon-silver nanoparticles as theranostic antibacterial brokers. ACS Appl Mater Interfaces. 2016;8:30449–57. https://doi.org/10.1021/acsami.6b09518.
Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metallic nanoparticles and their antimicrobial exercise in meals packaging purposes. Crit Rev Microbiol. 2018;44:161–81. https://doi.org/10.1080/1040841X.2017.1332001.
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic research of the antibacterial impact of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8. https://doi.org/10.1002/1097-4636(20001215)52:4percent3c662::aid-jbm10percent3e3.0.co;2-3.
Betts AJ, Dowling DP, McConnell ML, Pope C. The affect of platinum on the efficiency of silver-platinum anti-bacterial coatings. Mater Des. 2005;26:217–22. https://doi.org/10.1016/j.matdes.2004.02.006.
Mohamed Hamouda I. Present views of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26:143–51. https://doi.org/10.7555/JBR.26.20120027.
Rai M, Yadav A, Gade A. Silver nanoparticles as a brand new technology of antimicrobials. Biotechnol Adv. 2009;27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002.
Gunasekaran T, Nigusse T, Dhanaraju MD. Silver nanoparticles as actual topical bullets for wound therapeutic. J Am Coll Clin Wound Spec. 2012;3:82–96. https://doi.org/10.1016/j.jcws.2012.05.001.
Wang L, Hu C, Shao L. The antimicrobial exercise of nanoparticles: current state of affairs and prospects for the long run. Int J Nanomed. 2017;12:1227–49. https://doi.org/10.2147/IJN.S121956.
Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted supply of macromolecular medication, together with the EPR impact in stable tumor and scientific overview of the prototype polymeric drug SMANCS. J Management Launch. 2001;74:47–61. https://doi.org/10.1016/s0168-3659(01)00309-1.
Yan N, Xu J, Liu G, Ma C, Bao L, Cong Y, Wang Z, Zhao Y, Xu W, Chen C. Penetrating macrophage-based nanoformulation for periodontitis therapy. ACS Nano. 2022;16:18253–65. https://doi.org/10.1021/acsnano.2c05923.
Alqahtani F, Aleanizy F, Tahir EE, Alhabib H, Alsaif R, Shazly G, AlQahtani H, Alsarra I, Mahdavi J. Antibacterial exercise of chitosan nanoparticles in opposition to pathogenic N. Gonorrhoea. Int J Nanomed. 2020;15:7877–87. https://doi.org/10.2147/IJN.S272736.
Ibrahim A, Moodley D, Uche C, Maboza E, Olivier A, Petrik L. Antimicrobial and cytotoxic exercise of electrosprayed chitosan nanoparticles in opposition to endodontic pathogens and Balb/c 3T3 fibroblast cells. Sci Rep. 2021;11:24487. https://doi.org/10.1038/s41598-021-04322-4.
Oei JD, Zhao WW, Chu L, DeSilva MN, Ghimire A, Rawls HR, Whang Ok. Antimicrobial acrylic supplies with in situ generated silver nanoparticles. J Biomed Mater Res B Appl Biomater. 2012;100:409–15. https://doi.org/10.1002/jbm.b.31963.
Kim Ok-J, Sung WS, Suh BK, Moon S-Ok, Choi J-S, Kim JG, Lee DG. Antifungal exercise and mode of motion of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42. https://doi.org/10.1007/s10534-008-9159-2.
Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory exercise of nanocrystalline silver-derived options in porcine contact dermatitis. J Inflamm. 2010;7:13. https://doi.org/10.1186/1476-9255-7-13.
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral motion of silver nanoparticles in opposition to HIV-1. J Nanobiotechnol. 2010;8:1. https://doi.org/10.1186/1477-3155-8-1.
Freire PLL, Albuquerque AJR, Farias IAP, da Silva TG, Aguiar JS, Galembeck A, Flores MAP, Sampaio FC, Stamford TCM, Rosenblatt A. Antimicrobial and cytotoxicity analysis of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. Int J Biol Macromol. 2016;93:896–903. https://doi.org/10.1016/j.ijbiomac.2016.09.052.
Haitao Y, Yifan C, Mingchao S, Shuaijuan H. A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide MccJ25 and chitosan nanoparticles exerts sturdy antibacterial and anti inflammatory actions. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2021.811381.
Yu H, Ma Z, Meng S, Qiao S, Zeng X, Tong Z, Jeong KC. A novel nanohybrid antimicrobial primarily based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym. 2021;253: 117309. https://doi.org/10.1016/j.carbpol.2020.117309.
Zhao Y, Solar X, Zhang G, Trewyn BG, Slowing II, Lin VS-Y. Interplay of mesoporous silica nanoparticles with human purple blood cell membranes: measurement and floor results. ACS Nano. 2011;5:1366–75. https://doi.org/10.1021/nn103077k.
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron Ok, Nienhaus GU, Musyanovych A, Mailänder V, Landfester Ok, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5:1657–69. https://doi.org/10.1021/nn2000756.
Maurer LL, Yang X, Schindler AJ, Taggart RK, Jiang C, Hsu-Kim H, Sherwood DR, Meyer JN. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis Elegans. Nanotoxicology. 2016;10:831–5. https://doi.org/10.3109/17435390.2015.1110759.
Oh E, Delehanty JB, Sapsford KE, Susumu Ok, Goswami R, Blanco-Canosa JB, Dawson PE, Granek J, Shoff M, Zhang Q, et al. Mobile uptake and destiny of PEGylated gold nanoparticles relies on each cell-penetration peptides and particle measurement. ACS Nano. 2011;5:6434–48. https://doi.org/10.1021/nn201624c.
Wang T, Zheng Y, Shi Y, Zhao L. PH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound therapeutic by enhancing angiogenesis and antibacterial exercise. Drug Deliv Transl Res. 2019;9:227–39. https://doi.org/10.1007/s13346-018-00609-8.
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound therapeutic and an infection management. Supplies. 2019;12:2176. https://doi.org/10.3390/ma12132176.
Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S. Nanotechnology-driven therapeutic interventions in wound therapeutic: potential makes use of and purposes. ACS Cent Sci. 2017;3:163–75. https://doi.org/10.1021/acscentsci.6b00371.
Jaiswal M, Koul V, Dinda AKr. In vitro and in vivo investigational research of a nanocomposite-hydrogel-based dressing with a silver-coated chitosan wafer for full-thickness pores and skin wounds. J Appl Polym Sci. 2016. https://doi.org/10.1002/app.43472.
Yan N, Hu B, Xu J, Cai R, Liu Z, Fu D, Huo B, Liu Z, Zhao Y, Chen C, et al. Stem cell Janus patch for periodontal regeneration. Nano Immediately. 2022;42: 101336. https://doi.org/10.1016/j.nantod.2021.101336.
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: strategies, supplies, and purposes. Chem Rev. 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.
Pal P, Dadhich P, Srivas PK, Das B, Maulik D, Dhara S. Bilayered nanofibrous 3D hierarchy as pores and skin rudiment by emulsion electrospinning for burn wound administration. Biomater Sci. 2017;5:1786–99. https://doi.org/10.1039/c7bm00174f.
Tan G, Wang L, Pan W, Chen Ok. Polysaccharide electrospun nanofibers for wound therapeutic purposes. Int J Nanomed. 2022;17:3913–31. https://doi.org/10.2147/IJN.S371900.
Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N. An replace on scientific purposes of electrospun nanofibers for pores and skin bioengineering. Artif Cells Nanomed Biotechnol. 2016;44:1350–64. https://doi.org/10.3109/21691401.2015.1036999.
Wu T, Xue J, Li H, Zhu C, Mo X, Xia Y. Normal methodology for producing round gradients of energetic proteins on nanofiber scaffolds searched for wound closure and associated purposes. ACS Appl Mater Interfaces. 2018;10:8536–45. https://doi.org/10.1021/acsami.8b00129.
Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81. https://doi.org/10.1016/j.actbio.2011.03.019.
Wepener I, Richter W, van Papendorp D, Joubert AM. In vitro osteoclast-like and osteoblast cells’ response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2012;23:3029–40. https://doi.org/10.1007/s10856-012-4751-y.
Track W, Markel DC, Wang S, Shi T, Mao G, Ren W. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology. 2012;23: 115101. https://doi.org/10.1088/0957-4484/23/11/115101.
Baker BM, Nathan AS, Gee AO, Mauck RL. The affect of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials. 2010;31:6190–200. https://doi.org/10.1016/j.biomaterials.2010.04.036.
Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A. 2011;99A:467–78. https://doi.org/10.1002/jbm.a.33206.
Planka L, Srnec R, Rauser P, Stary D, Filova E, Jancar J, Juhasova J, Kren L, Necas A, Gal P. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial progress plate arrest in pigs. Biomed Pap. 2012;156:128–34. https://doi.org/10.5507/bp.2012.041.
You C, Li Q, Wang X, Wu P, Ho JK, Jin R, Zhang L, Shao H, Han C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound therapeutic through regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7:10489. https://doi.org/10.1038/s41598-017-10481-0.
Wright JB, Lam Ok, Buret AG, Olson ME, Burrell RE. Early therapeutic occasions in a porcine mannequin of contaminated wounds: results of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and therapeutic. Wound Restore Regen. 2002;10:141–51. https://doi.org/10.1046/j.1524-475x.2002.10308.x.
Gear AJ, Hellewell TB, Wright HR, Mazzarese PM, Arnold PB, Rodeheaver GT, Edlich RF. A brand new silver sulfadiazine water soluble gel. Burns J Int Soc Burn Inj. 1997;23:387–91. https://doi.org/10.1016/s0305-4179(97)89763-x.
Bowler PG, Welsby S, Towers V, Sales space R, Hogarth A, Rowlands V, Joseph A, Jones SA. Multidrug-resistant organisms, wounds and topical antimicrobial safety. Int Wound J. 2012;9:387–96. https://doi.org/10.1111/j.1742-481X.2012.00991.x.
Liu X, Gan H, Hu C, Solar W, Zhu X, Meng Z, Gu R, Wu Z, Dou G. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int J Nanomed. 2018;14:289–300. https://doi.org/10.2147/IJN.S187918.
Gao L, Zhou Y, Peng J, Xu C, Xu Q, Xing M, Chang J. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound therapeutic. NPG Asia Mater. 2019;11:1–11. https://doi.org/10.1038/s41427-019-0168-0.
Shi G, Chen W, Zhang Y, Dai X, Zhang X, Wu Z. An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in continual wound therapeutic. Langmuir ACS J Surf Colloids. 2019;35:1837–45. https://doi.org/10.1021/acs.langmuir.8b01834.
Ballottin D, Fulaz S, Cabrini F, Tsukamoto J, Durán N, Alves OL, Tasic L. Antimicrobial textiles: biogenic silver nanoparticles in opposition to Candida and Xanthomonas. Mater Sci Eng C Mater Biol Appl. 2017;75:582–9. https://doi.org/10.1016/j.msec.2017.02.110.
Su C-H, Kumar GV, Adhikary S, Velusamy P, Pandian Ok, Anbu P. Preparation of cotton cloth utilizing sodium alginate-coated nanoparticles to guard in opposition to nosocomial pathogens. Biochem Eng J. 2017;117:28–35. https://doi.org/10.1016/j.bej.2016.10.020.
Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M. Floor chemical and organic characterization of flax materials modified with silver nanoparticles for biomedical purposes. Mater Sci Eng C Mater Biol Appl. 2015;52:1–10. https://doi.org/10.1016/j.msec.2015.03.035.
Hua S, Wu SY. The usage of lipid-based nanocarriers for focused ache therapies. Entrance Pharmacol. 2013;4:143. https://doi.org/10.3389/fphar.2013.00143.
Ding B-S, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR. Superior drug supply methods that focus on the vascular endothelium. Mol Interv. 2006;6:98–112. https://doi.org/10.1124/mi.6.2.7.
Xu J, Zhang Y, Xu J, Liu G, Di C, Zhao X, Li X, Li Y, Pang N, Yang C, et al. Engineered nanoplatelets for focused supply of plasminogen activators to reverse thrombus in a number of mouse thrombosis fashions. Adv Mater. 2020;32:1905145. https://doi.org/10.1002/adma.201905145.
Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, Medina DI, Díez-Pascual AM. 5-Fluorouracil nano-delivery methods as a cutting-edge for most cancers remedy. Eur J Med Chem. 2023;246: 114995. https://doi.org/10.1016/j.ejmech.2022.114995.
Pourmadadi M, Eshaghi MM, Rahmani E, Ajalli N, Bakhshi S, Mirkhaef H, Lasemi MV, Rahdar A, Behzadmehr R, Díez-Pascual AM. Cisplatin-loaded nanoformulations for most cancers remedy: a complete overview. J Drug Deliv Sci Technol. 2022;77: 103928. https://doi.org/10.1016/j.jddst.2022.103928.
Rommasi F, Esfandiari N. Liposomal nanomedicine: purposes for drug supply in most cancers remedy. Nanoscale Res Lett. 2021;16:95. https://doi.org/10.1186/s11671-021-03553-8.
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug supply methods and anticancer medication. Mol J Synth Chem Nat Prod Chem. 2018;23:907. https://doi.org/10.3390/molecules23040907.
Balzus B, Sahle FF, Hönzke S, Gerecke C, Schumacher F, Hedtrich S, Kleuser B, Bodmeier R. Formulation and ex vivo analysis of polymeric nanoparticles for managed supply of corticosteroids to the pores and skin and the corneal epithelium. Eur J Pharm Biopharm. 2017;115:122–30. https://doi.org/10.1016/j.ejpb.2017.02.001.
Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medication: a overview of the primary matters. Drug Discov Immediately. 2014;19:743–53. https://doi.org/10.1016/j.drudis.2014.03.024.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug supply. Entrance Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286.
Schwendener RA. Liposomes as vaccine supply methods: a overview of the latest advances. Ther Adv Vaccines. 2014;2:159–82. https://doi.org/10.1177/2051013614541440.
Benyettou F, Rezgui R, Ravaux F, Jaber T, Blumer Ok, Jouiad M, Motte L, Olsen J-C, Platas-Iglesias C, Magzoub M, et al. Synthesis of silver nanoparticles for the twin supply of doxorubicin and alendronate to most cancers cells. J Mater Chem B. 2015;3:7237–45. https://doi.org/10.1039/C5TB00994D.
Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT. Silver nanoscale antisense drug supply system for photoactivated gene silencing. ACS Nano. 2013;7:2948–59. https://doi.org/10.1021/nn304868y.
Naz M, Nasiri N, Ikram M, Nafees M, Qureshi MZ, Ali S, Tricoli A. Eco-friendly biosynthesis, anticancer drug loading and cytotoxic impact of capped Ag-nanoparticles in opposition to breast most cancers. Appl Nanosci. 2017;7:793–802. https://doi.org/10.1007/s13204-017-0615-6.
Park W, Na Ok. Advances within the synthesis and software of nanoparticles for drug supply. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:494–508. https://doi.org/10.1002/wnan.1325.
Khalid S, Hanif R. Inexperienced biosynthesis of silver nanoparticles conjugated to gefitinib as supply automobile. Int J Adv Sci Eng Technol. 2017;5:59–63.
Xu J, Zhang Y, Xu J, Wang M, Liu G, Wang J, Zhao X, Qi Y, Shi J, Cheng Ok, et al. Reversing tumor stemness through orally focused nanoparticles achieves environment friendly colon most cancers therapy. Biomaterials. 2019;216: 119247. https://doi.org/10.1016/j.biomaterials.2019.119247.
Afsharzadeh M, Hashemi M, Babaei M, Abnous Ok, Ramezani M. PEG-PLA nanoparticles adorned with small-molecule PSMA ligand for focused supply of galbanic acid and docetaxel to prostate most cancers cells. J Cell Physiol. 2020;235:4618–30. https://doi.org/10.1002/jcp.29339.
Pamujula S, Hazari S, Bolden G, Graves RA, Chinta DD, Sprint S, Kishore V, Mandal TK. Mobile supply of PEGylated PLGA nanoparticles. J Pharm Pharmacol. 2012;64:61–7. https://doi.org/10.1111/j.2042-7158.2011.01376.x.
Kościk I, Jankowski D, Jagusiak A. Carbon nanomaterials for theranostic use. C. 2022; 8:3. https://doi.org/10.3390/c8010003.
Kearns O, Camisasca A, Giordani S. Hyaluronic acid-conjugated carbon nanomaterials for enhanced tumour focusing on skill. Molecules. 2021;27:48. https://doi.org/10.3390/molecules27010048.
Giusto E, Žárská L, Beirne DF, Rossi A, Bassi G, Ruffini A, Montesi M, Montagner D, Ranc V, Panseri S. Graphene oxide nanoplatforms to reinforce cisplatin-based drug supply in anticancer remedy. Nanomaterials. 2022;12:2372. https://doi.org/10.3390/nano12142372.
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for supply of platinum anticancer medication. Adv Drug Deliv Rev. 2013;65:1667–85. https://doi.org/10.1016/j.addr.2013.09.014.
Qian Q, Zhu L, Zhu X, Solar M, Yan D. Drug-polymer hybrid macromolecular engineering: degradable PEG built-in by Platinum(IV) for most cancers remedy. Matter. 2019;1:1618–30. https://doi.org/10.1016/j.matt.2019.09.016.
Xiao X, Wang T, Li L, Zhu Z, Zhang W, Cui G, Li W. Co-delivery of cisplatin(IV) and capecitabine as an efficient and non-toxic most cancers therapy. Entrance Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00110.
Dong Z, Kang Y, Yuan Q, Luo M, Gu Z. H2O2-responsive nanoparticle primarily based on the supramolecular self-assemble of cyclodextrin. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00552.
Xiong Q, Cui M, Yu G, Wang J, Track T. Facile fabrication of reduction-responsive supramolecular nanoassemblies for co-delivery of doxorubicin and sorafenib towards hepatoma cells. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00061.
Cuong N-V, Jiang J-L, Li Y-L, Chen J-R, Jwo S-C, Hsieh M-F. Doxorubicin-loaded PEG-PCL-PEG micelle utilizing xenograft mannequin of nude mice: impact of a number of administration of micelle on the suppression of human breast most cancers. Cancers. 2010;3:61–78. https://doi.org/10.3390/cancers3010061.
Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S, Chhillar AK. Biodegradable PEG-PCL nanoparticles for co-delivery of MUC1 inhibitor and doxorubicin for the confinement of triple-negative breast most cancers. J Polym Environ. 2022. https://doi.org/10.1007/s10924-022-02654-4.
Ahmad Shariff SH, Wan Abdul Khodir WK, Abd Hamid S, Haris MS, Ismail MW. Poly(Caprolactone)-b-Poly(Ethylene Glycol)-based polymeric micelles as drug carriers for environment friendly breast most cancers remedy: a scientific overview. Polymers. 2022;14:4847. https://doi.org/10.3390/polym14224847.
Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds primarily based on PCL-PEG-PCL and tumor cell-derived exosomes to attenuate the overseas physique response. Biomater Biosyst. 2022;7: 100055. https://doi.org/10.1016/j.bbiosy.2022.100055.
Niu Ok, Yao Y, Xiu M, Guo C, Ge Y, Wang J. Managed drug supply by polylactide Stereocomplex Micelle for cervical most cancers chemotherapy. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00930.
Zhu Y-H, Ye N, Tang X-F, Khan MI, Liu H-L, Shi N, Grasp L-F. Synergistic impact of retinoic acid polymeric micelles and prodrug for the pharmacodynamic analysis of tumor suppression. Entrance Pharmacol. 2019;10:447. https://doi.org/10.3389/fphar.2019.00447.
Kong N, Deng M, Solar X-N, Chen Y-D, Sui X-B. Polydopamine-functionalized CA-(PCL-Ran-PLA) nanoparticles for goal supply of docetaxel and chemo-photothermal remedy of breast most cancers. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00125.
Chen X, Zhao L, Kang Y, He Z, Xiong F, Ling X, Wu J. Important suppression of non-small-cell lung most cancers by hydrophobic poly(ester amide) nanoparticles with excessive docetaxel loading. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00118.
Nan W, Ding L, Chen H, Khan FU, Yu L, Sui X, Shi X. Topical use of quercetin-loaded chitosan nanoparticles in opposition to ultraviolet B radiation. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00826.
Feng C, Zhu D, Chen L, Lu Y, Liu J, Kim NY, Liang S, Zhang X, Lin Y, Ma Y, et al. Focused supply of chlorin E6 through redox delicate diselenide-containing micelles for improved photodynamic remedy in cluster of differentiation 44-overexpressing breast most cancers. Entrance Pharmacol. 2019;10:369. https://doi.org/10.3389/fphar.2019.00369.
Wu J, Yuan J, Ye B, Wu Y, Xu Z, Chen J, Chen J. Twin-responsive core crosslinking glycopolymer-drug conjugates nanoparticles for exact hepatocarcinoma remedy. Entrance Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00663.
Faid AH, Shouman SA, Badr YA, Sharaky M. Enhanced photothermal heating and mixture remedy of gold nanoparticles on a breast cell mannequin. BMC Chem. 2022;16:66. https://doi.org/10.1186/s13065-022-00859-1.
Huo S, Ma H, Huang Ok, Liu J, Wei T, Jin S, Zhang J, He S, Liang X-J. Superior penetration and retention conduct of fifty Nm gold nanoparticles in tumors. Most cancers Res. 2013;73:319–30. https://doi.org/10.1158/0008-5472.CAN-12-2071.
Roudsari MH, Saeidi N, Kabiri N, Ahmadi A, Tabrizi MM, Shahmabadi HE, Khiyavi AA, Reghbati B. Investigation of traits and conduct of loaded carboplatin on the, liposomes nanoparticles, on the lung and ovarian most cancers: an in-vitro analysis. Asian Pac J Most cancers Biol. 2016;1:9–9. https://doi.org/10.31557/apjcb.2016.1.1.9-13.
Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles to be used in most cancers drug supply: course of optimization and in vitro characterization. Nanomaterials. 2016;6:116. https://doi.org/10.3390/nano6060116.
Zhao L, Zhao W, Liu Y, Chen X, Wang Y. Nano-hydroxyapatite-derived drug and gene co-delivery system for anti-angiogenesis remedy of breast most cancers. Med Sci Monit. 2017;23:4723–32. https://doi.org/10.12659/MSM.902538.
Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of focused PLGA nanoparticles: a scientific overview. RSC Adv. 2021;11:9433. https://doi.org/10.1039/d1ra00074h.
Abdellatif AAH, Ali AT, Bouazzaoui A, Alsharidah M, Rugaie OA, Tolba NS. Formulation of polymeric nanoparticles loaded sorafenib; analysis of cytotoxicity, molecular analysis, and gene expression research in lung and breast most cancers cell traces. Nanotechnol Rev. 2022;11:987–1004. https://doi.org/10.1515/ntrev-2022-0058.
Vangara KK, Liu JL, Palakurthi S. Hyaluronic acid-decorated PLGA-PEG nanoparticles for focused supply of SN-38 to ovarian most cancers. Anticancer Res. 2013;33:2425–34.
Jin C, Wang S, Bai L. Preparation of paclitaxel-loaded nanoparticles focusing on liver most cancers stem cells and their results on liver most cancers Huh-7 and HepG2 cells. Most cancers Res Clin. 2021;(6):99–103.
Dey SK, Mandal B, Bhowmik M, Ghosh LK. Improvement and in vitro analysis of letrozole loaded biodegradable nanoparticles for breast most cancers remedy. Braz J Pharm Sci. 2009;45:585–91. https://doi.org/10.1590/S1984-82502009000300025.
Zhang R, Ru Y, Gao Y, Li J, Mao S. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic mixture remedy of lung most cancers. Drug Des Devel Remedy. 2017;11:2631–42. https://doi.org/10.2147/DDDT.S143047.
Nokhodi F, Nekoei M, Goodarzi MT. Hyaluronic acid-coated chitosan nanoparticles as targeted-carrier of tamoxifen in opposition to MCF7 and TMX-resistant MCF7 cells. J Mater Sci Mater Med. 2022;33:24. https://doi.org/10.1007/s10856-022-06647-6.
Shah HS, Joshi SA, Haider A, Kortz U, ur-Rehman N, Iqbal J. Synthesis of chitosan-coated polyoxometalate nanoparticles in opposition to most cancers and its metastasis. RSC Adv. 2015;5:93234–42. https://doi.org/10.1039/C5RA18489D.
Comparetti EJ, Lins PMP, Quitiba JVB, Zucolotto V. Most cancers cell membrane-derived nanoparticles enhance the exercise of gemcitabine and paclitaxel on pancreatic most cancers cells and coordinate immunoregulatory properties on skilled antigen-presenting cells. Mater Adv. 2020;1:1775–87. https://doi.org/10.1039/D0MA00367K.
Barenholz Y. Doxil®—the primary FDA-approved nano-drug: classes realized. J Management Rel. 2012;160:117–34. https://doi.org/10.1016/j.jconrel.2012.03.020.
O’Brien S, Schiller G, Lister J, Damon L, Goldberg S, Aulitzky W, Ben-Yehuda D, Inventory W, Coutre S, Douer D, et al. Excessive-dose vincristine sulfate liposome injection for superior, relapsed, and refractory grownup Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31:676–83. https://doi.org/10.1200/JCO.2012.46.2309.
Silverman JA, Deitcher SR. Marqibo® (Vincristine Sulfate Liposome Injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Most cancers Chemother Pharmacol. 2013;71:555–64. https://doi.org/10.1007/s00280-012-2042-4.
Cohen SM, Rockefeller N, Mukerji R, Durham D, Forrest ML, Cai S, Cohen MS, Shnayder Y. Efficacy and toxicity of peritumoral supply of nanoconjugated cisplatin in an in vivo murine mannequin of head and neck squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2013;139:382–7. https://doi.org/10.1001/jamaoto.2013.214.
Stathopoulos GP, Boulikas T. Lipoplatin formulation overview article. J Drug Deliv. 2012;2012: 581363. https://doi.org/10.1155/2012/581363.
Boulikas T. Low toxicity and anticancer exercise of a novel liposomal cisplatin (lipoplatin) in mouse xenografts. Oncol Rep. 2004;12:3–12.
Boulikas T. Medical overview on lipoplatin: a profitable liposomal formulation of cisplatin. Skilled Opin Investig Medicine. 2009;18:1197–218. https://doi.org/10.1517/13543780903114168.
Farhat FS, Temraz S, Kattan J, Ibrahim Ok, Bitar N, Haddad N, Jalloul R, Hatoum HA, Nsouli G, Shamseddine AI. A part II research of lipoplatin (liposomal cisplatin)/vinorelbine mixture in HER-2/Neu-negative metastatic breast most cancers. Clin Breast Most cancers. 2011;11:384–9. https://doi.org/10.1016/j.clbc.2011.08.005.
Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Website-specific antibody drug conjugates for most cancers remedy. MAbs. 2014;6:34–45. https://doi.org/10.4161/mabs.27022.
Chen L, Wang L, Shion H, Yu C, Yu YQ, Zhu L, Li M, Chen W, Gao Ok. In-depth structural characterization of Kadcyla® (ado-trastuzumab emtansine) and its biosimilar candidate. MAbs. 2016;8:1210–23. https://doi.org/10.1080/19420862.2016.1204502.
Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, Chen L, Zhu Y, Guo C, Shi J, et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab past T-DM1 in breast most cancers: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)Trastuzumab Duocarmazine (SYD985). Eur J Med Chem. 2019;183: 111682. https://doi.org/10.1016/j.ejmech.2019.111682.
Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Skilled Opin Pharmacother. 2006;7:1041–53. https://doi.org/10.1517/14656566.7.8.1041.
Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, Dev GK, Manickavasagam M, Premkumar Ok, Thajuddin N, et al. An investigation on the cytotoxicity and caspase-mediated apoptotic impact of biologically synthesized silver nanoparticles utilizing podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces. 2013;102:708–17. https://doi.org/10.1016/j.colsurfb.2012.09.042.
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metallic nanoparticles: the affect of measurement, form, and dielectric setting. J Phys Chem B. 2003;107:668–77. https://doi.org/10.1021/jp026731y.
Khan I, Saeed Ok, Khan I. Nanoparticles: properties, purposes and toxicities. Arab J Chem. 2019;12:908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.
Sharma V, Verma D, Okram GS. Affect of surfactant, particle measurement and dispersion medium on floor plasmon resonance of silver nanoparticles. J Phys Condens Matter. 2020;32: 145302. https://doi.org/10.1088/1361-648X/ab601a.
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Components affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15. https://doi.org/10.1021/mp800051m.
Galić E, Ilić Ok, Hartl S, Tetyczka C, Kasemets Ok, Kurvet I, Milić M, Barbir R, Pem B, Erceg I, et al. Influence of floor functionalization on the toxicity and antimicrobial results of selenium nanoparticles contemplating totally different routes of entry. Meals Chem Toxicol. 2020;144: 111621. https://doi.org/10.1016/j.fct.2020.111621.
Piktel E, Niemirowicz Ok, Wątek M, Wollny T, Deptuła P, Bucki R. Current insights in nanotechnology-based medication and formulations designed for efficient anti-cancer remedy. J Nanobiotechnol. 2016;14:39. https://doi.org/10.1186/s12951-016-0193-x.
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an rising platform for most cancers remedy. Nat Nanotechnol. 2007;2:751–60. https://doi.org/10.1038/nnano.2007.387.
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene supply to cells and tissue. Adv Drug Deliv Rev. 2012;64:61–71. https://doi.org/10.1016/j.addr.2012.09.023.
He X, Ma J, Mercado AE, Xu W, Jabbari E. Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res. 2008;25:1552–62. https://doi.org/10.1007/s11095-007-9513-z.
George BPA, Kumar N, Abrahamse H, Ray SS. Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-32480-5.
Ramar M, Manikandan B, Marimuthu PN, Raman T, Mahalingam A, Subramanian P, Karthick S, Munusamy A. Synthesis of silver nanoparticles utilizing solanum trilobatum fruits extract and its antibacterial, cytotoxic exercise in opposition to human breast most cancers cell line MCF 7. Spectrochim Acta A Mol Biomol Spectrosc. 2015;140:223–8. https://doi.org/10.1016/j.saa.2014.12.060.
Venugopal Ok, Quite HA, Rajagopal Ok, Shanthi MP, Sheriff Ok, Illiyas M, Quite RA, Manikandan E, Uvarajan S, Bhaskar M, et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer actions (MCF 7 breast and A549 lung cell traces) of the crude extract of Syzygium Aromaticum. J Photochem Photobiol B. 2017;167:282–9. https://doi.org/10.1016/j.jphotobiol.2016.12.013.
Kikuchi M, Kuroki S, Kayama M, Sakaguchi S, Lee Ok-Ok, Yonehara S. Protease exercise of procaspase-8 is crucial for cell survival by inhibiting each apoptotic and nonapoptotic cell demise depending on receptor-interacting protein kinase 1 (RIP1) and RIP3 *. J Biol Chem. 2012;287:41165–73. https://doi.org/10.1074/jbc.M112.419747.
Selvi BCG, Madhavan J, Santhanam A. Cytotoxic impact of silver nanoparticles synthesized from padina tetrastromatica on breast most cancers cell line. Adv Nat Sci Nanosci Nanotechnol. 2016;7: 035015.
Bin-Jumah M, Al-Abdan M, Albasher G, Alarifi S. Results of inexperienced silver nanoparticles on apoptosis and oxidative stress in regular and cancerous human hepatic cells in vitro. Int J Nanomed. 2020;15:1537–48. https://doi.org/10.2147/IJN.S239861.
Arora S, Jain J, Rajwade JM, Paknikar KM. Mobile responses induced by silver nanoparticles. In Vitro Stud Toxicol Lett. 2008;179:93–100. https://doi.org/10.1016/j.toxlet.2008.04.009.
Ullah I, Khalil AT, Ali M, Iqbal J, Ali W, Alarifi S, Shinwari ZK. Inexperienced-synthesized silver nanoparticles induced apoptotic cell demise in MCF-7 breast most cancers cells by producing reactive oxygen species and activating caspase 3 and 9 enzyme actions. Oxid Med Cell Longev. 2020;2020: e1215395. https://doi.org/10.1155/2020/1215395.
Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is related to endogenous endonuclease activation. Nature. 1980;284:555–6. https://doi.org/10.1038/284555a0.
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic most cancers. Innovation. 2021;2: 100174. https://doi.org/10.1016/j.xinn.2021.100174.
Goldberg MS. Bettering most cancers immunotherapy by nanotechnology. Nat Rev Most cancers. 2019;19:587–602. https://doi.org/10.1038/s41568-019-0186-9.
Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The way forward for most cancers therapy: immunomodulation, CARs and mixture immunotherapy. Nat Rev Clin Oncol. 2016;13:273–90. https://doi.org/10.1038/nrclinonc.2016.25.
Hickey JW, Vicente FP, Howard GP, Mao H-Q, Schneck JP. Biologically impressed design of nanoparticle synthetic antigen-presenting cells for immunomodulation. Nano Lett. 2017;17:7045–54. https://doi.org/10.1021/acs.nanolett.7b03734.
Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ. Synapse-directed supply of immunomodulators utilizing T-cell-conjugated nanoparticles. Biomaterials. 2012;33:5776–87. https://doi.org/10.1016/j.biomaterials.2012.04.029.
Radovic-Moreno AF, Chernyak N, Mader CC, Nallagatla S, Kang RS, Hao L, Walker DA, Halo TL, Merkel TJ, Rische CH, et al. Immunomodulatory spherical nucleic acids. Proc Natl Acad Sci. 2015;112:3892–7. https://doi.org/10.1073/pnas.1502850112.
Zheng Y, Tang L, Mabardi L, Kumari S, Irvine DJ. Enhancing adoptive cell remedy of most cancers by focused supply of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 2017;11:3089–100. https://doi.org/10.1021/acsnano.7b00078.
Li J, Luo Y, Zeng Z, Cui D, Huang J, Xu C, Li L, Pu Ok, Zhang R. Precision most cancers sono-immunotherapy utilizing deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nat Commun. 2022;13:4032. https://doi.org/10.1038/s41467-022-31551-6.
Adams GP, Weiner LM. Monoclonal antibody remedy of most cancers. Nat Biotechnol. 2005;23:1147–57. https://doi.org/10.1038/nbt1137.
Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in most cancers immunotherapy. Mol Biol Rep. 2018;45:2935–40. https://doi.org/10.1007/s11033-018-4427-x.
Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for most cancers immunotherapy. Lancet. 2009;373:1033–40. https://doi.org/10.1016/S0140-6736(09)60251-8.
Pardoll DM. The blockade of immune checkpoints in most cancers immunotherapy. Nat Rev Most cancers. 2012;12:252–64. https://doi.org/10.1038/nrc3239.
Ribas A, Wolchok JD. Most cancers immunotherapy utilizing checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in scientific most cancers immunotherapy. Br J Most cancers. 2019;120:6–15. https://doi.org/10.1038/s41416-018-0328-y.
Lee S, Margolin Ok. Cytokines in most cancers immunotherapy. Cancers. 2011;3:3856–93. https://doi.org/10.3390/cancers3043856.
Hemminki O, dos Santos JM, Hemminki A. Oncolytic viruses for most cancers immunotherapy. J Hematol Oncol. 2020;13:84. https://doi.org/10.1186/s13045-020-00922-1.
Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based most cancers immunotherapy: from primary biology to scientific improvement. J Hematol Oncol. 2021;14:7. https://doi.org/10.1186/s13045-020-01014-w.
Shin MH, Kim J, Lim SA, Kim J, Kim S-J, Lee Ok-M. NK cell-based immunotherapies in most cancers. Immune Netw. 2020;20: e14. https://doi.org/10.4110/in.2020.20.e14.
Cerwenka A, Lanier LL. Pure killer cell reminiscence in an infection, irritation and most cancers. Nat Rev Immunol. 2016;16:112–23. https://doi.org/10.1038/nri.2015.9.
Guillerey C, Huntington ND, Smyth MJ. Concentrating on pure killer cells in most cancers immunotherapy. Nat Immunol. 2016;17:1025–36. https://doi.org/10.1038/ni.3518.
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17. https://doi.org/10.1056/NEJMoa1407222.
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor results and may set up reminiscence in sufferers with superior leukemia. Sci Transl Med. 2011;3:95ra73. https://doi.org/10.1126/scitranslmed.3002842.
Markov OV, Mironova NL, Sennikov SV, Vlassov VV, Zenkova MA. Prophylactic dendritic cell-based vaccines effectively inhibit metastases in murine metastatic melanoma. PLoS ONE. 2015;10: e0136911. https://doi.org/10.1371/journal.pone.0136911.
Zhang Y, Lin S, Wang X-Y, Zhu G. Nanovaccines for most cancers immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1559. https://doi.org/10.1002/wnan.1559.
Miao L, Zhang Y, Huang L. MRNA vaccine for most cancers immunotherapy. Mol Most cancers. 2021;20:41. https://doi.org/10.1186/s12943-021-01335-5.
Salem ML. The usage of dendritic cells for peptide-based vaccination in most cancers immunotherapy. In: Lawman MJP, Lawman PD, editors. Most cancers vaccines: strategies and protocols; strategies in molecular biology. New York, NY: Springer; 2014. p. 479–503.
Palucka Ok, Banchereau J. Most cancers immunotherapy through dendritic cells. Nat Rev Most cancers. 2012;12:265–77. https://doi.org/10.1038/nrc3258.
Ahmed MS, Bae Y-S. Dendritic cell-based therapeutic most cancers vaccines: previous, current and future. Clin Exp Vaccine Res. 2014;3:113–6. https://doi.org/10.7774/cevr.2014.3.2.113.
Palucka Ok, Ueno H, Fay J, Banchereau J. Dendritic cells and immunity in opposition to most cancers. J Intern Med. 2011;269:64–73. https://doi.org/10.1111/j.1365-2796.2010.02317.x.
Upadhyay S, Sharma N, Gupta KB, Dhiman M. Function of immune system in tumor development and carcinogenesis. J Cell Biochem. 2018;119:5028–42. https://doi.org/10.1002/jcb.26663.
Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The crosstalk between tumor cells and the immune microenvironment in breast most cancers: implications for immunotherapy. Entrance Oncol. 2021;11:610303. https://doi.org/10.3389/fonc.2021.610303.
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in most cancers: from tumor initiation to metastatic development. Genes Dev. 2018;32:1267–84. https://doi.org/10.1101/gad.314617.118.
Pinto A, Pocard M. Photodynamic remedy and photothermal remedy for the therapy of peritoneal metastasis: a scientific overview. Pleura Peritoneum. 2018;3:20180124. https://doi.org/10.1515/pp-2018-0124.
Li X, Lovell JF, Yoon J, Chen X. Medical improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74. https://doi.org/10.1038/s41571-020-0410-2.
Kong C, Chen X. Mixed photodynamic and photothermal remedy and immunotherapy for most cancers therapy: a overview. Int J Nanomed. 2022;17:6427–46. https://doi.org/10.2147/IJN.S388996.
Guo S, Track Z, Ji D-Ok, Reina G, Fauny J-D, Nishina Y, Ménard-Moyon C, Bianco A. Mixed photothermal and photodynamic remedy for most cancers therapy utilizing a multifunctional graphene oxide. Pharmaceutics. 2022;14:1365. https://doi.org/10.3390/pharmaceutics14071365.
Li R-T, Zhu Y-D, Li W-Y, Hou Y-Ok, Zou Y-M, Zhao Y-H, Zou Q, Zhang W-H, Chen J-X. Synergistic photothermal-photodynamic-chemotherapy towards breast most cancers primarily based on a liposome-coated core-shell AuNS@NMOFs nanocomposite encapsulated with gambogic acid. J Nanobiotechnol. 2022;20:212. https://doi.org/10.1186/s12951-022-01427-4.
Liu P, Yang W, Shi L, Zhang H, Xu Y, Wang P, Zhang G, Chen WR, Zhang B, Wang X. Concurrent photothermal remedy and photodynamic remedy for cutaneous squamous cell carcinoma by gold nanoclusters beneath a single NIR laser irradiation. J Mater Chem B. 2019;7:6924–33. https://doi.org/10.1039/C9TB01573F.
Shibu ES, Hamada M, Murase N, Biju V. Nanomaterials formulations for photothermal and photodynamic remedy of most cancers. J Photochem Photobiol C Photochem Rev. 2013;15:53–72. https://doi.org/10.1016/j.jphotochemrev.2012.09.004.
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic remedy. J Natl Most cancers Inst. 1998;90:889–905.
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, et al. Concentrating on photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell demise. Nat Commun. 2019;10:3349. https://doi.org/10.1038/s41467-019-11269-8.
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal remedy with immune-adjuvant nanoparticles along with checkpoint blockade for efficient most cancers immunotherapy. Nat Commun. 2016;7:13193. https://doi.org/10.1038/ncomms13193.
Santos LL, Oliveira J, Monteiro E, Santos J, Sarmento C. Therapy of head and neck most cancers with photodynamic remedy with redaporfin: a scientific case report. Case Rep Oncol. 2018;11:769–76. https://doi.org/10.1159/000493423.
Chu KF, Dupuy DE. Thermal ablation of tumours: organic mechanisms and advances in remedy. Nat Rev Most cancers. 2014;14:199–208. https://doi.org/10.1038/nrc3672.
Nyst HJ, Tan IB, Stewart FA, Balm AJM. Is photodynamic remedy a great various to surgical procedure and radiotherapy within the therapy of head and neck most cancers? Photodiagnosis Photodyn Ther. 2009;6:3–11. https://doi.org/10.1016/j.pdpdt.2009.03.002.
Allison RR, Sibata CH, Downie GH, Cuenca RE. A scientific overview of PDT for cutaneous malignancies. Photodiagn Photodyn Remedy. 2006;3:214–26. https://doi.org/10.1016/j.pdpdt.2006.05.002.
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Mixture of phototherapy with immune checkpoint blockade: principle and follow in most cancers. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.955920.
Naylor MF, Chen WR, Teague TK, Perry LA, Nordquist RE. In situ photoimmunotherapy: a tumour-directed therapy for melanoma. Br J Dermatol. 2006;155:1287–92. https://doi.org/10.1111/j.1365-2133.2006.07514.x.
Mroz P, Hashmi JT, Huang Y-Y, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic remedy. Skilled Rev Clin Immunol. 2011;7:75–91. https://doi.org/10.1586/eci.10.81.
Fortunate SS, Soo KC, Zhang Y. Nanoparticles in photodynamic remedy. Chem Rev. 2015;115:1990–2042. https://doi.org/10.1021/cr5004198.
Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, Dong X, Wang Z, Gu Z, Ma X, et al. Sensible MoS2/Fe3O4 nanotheranostic for magnetically focused photothermal remedy guided by magnetic resonance/photoacoustic imaging. Theranostics. 2015;5:931–45. https://doi.org/10.7150/thno.11802.
Zhou Z, Solar Y, Shen J, Wei J, Yu C, Kong B, Liu W, Yang H, Yang S, Wang W. Iron/iron oxide core/shell nanoparticles for magnetic focusing on MRI and near-infrared photothermal remedy. Biomaterials. 2014;35:7470–8. https://doi.org/10.1016/j.biomaterials.2014.04.063.
Bolze F, Jenni S, Bitter A, Heitz V. Molecular photosensitisers for two-photon photodynamic remedy. Chem Commun. 2017;53:12857–77. https://doi.org/10.1039/C7CC06133A.
Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and purposes in theranostics. Chem Rev. 2014;114:5161–214. https://doi.org/10.1021/cr400425h.
Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor therapy. Int J Most cancers. 2018;143:3050–60. https://doi.org/10.1002/ijc.31717.
Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, et al. Biodegradable hole mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and delicate photo-therapeutic-induced mitochondrial injury on gastric most cancers. J Nanobiotechnol. 2020;18:99. https://doi.org/10.1186/s12951-020-00653-y.
Zou J, Li L, Yang Z, Chen X. Phototherapy meets immunotherapy: a win-win technique to struggle in opposition to most cancers. Nanophotonics. 2021;10:3229–45. https://doi.org/10.1515/nanoph-2021-0209.
Mew D, Wat CK, Towers GH, Levy JG. Photoimmunotherapy: therapy of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol Baltim Md. 1950;1983(130):1473–7.
Cross D, Burmester JK. Gene remedy for most cancers therapy: previous, current and future. Clin Med Res. 2006;4:218–27.
Belete TM. The present standing of gene remedy for the therapy of most cancers. Biol Targets Remedy. 2021;15:67–77. https://doi.org/10.2147/BTT.S302095.
Weichselbaum RR, Kufe D. Gene remedy of most cancers. Lancet. 1997;349:S10–2. https://doi.org/10.1016/S0140-6736(97)90013-1.
Gaj T, Sirk SJ, Shui S, Liu J. Genome-editing applied sciences: rules and purposes. Chilly Spring Harb Perspect Biol. 2016;8: a023754. https://doi.org/10.1101/cshperspect.a023754.
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Methods for focusing on gene remedy in most cancers cells with tumor-specific promoters. Entrance Oncol. 2020. https://doi.org/10.3389/fonc.2020.605380.
Gonçalves GAR, Paiva RMA. Gene remedy: advances challenges and views. Einstein. 2017;15:369–75. https://doi.org/10.1590/S1679-45082017RB4024.
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene remedy in most cancers therapy: why go nano? Pharmaceutics. 2020;12:233. https://doi.org/10.3390/pharmaceutics12030233.
Wang Ok, Kievit FM, Zhang M. Nanoparticles for most cancers gene remedy: latest advances, challenges, and techniques. Pharmacol Res. 2016;114:56–66. https://doi.org/10.1016/j.phrs.2016.10.016.
Roacho-Perez JA, Gallardo-Blanco HL, Sanchez-Dominguez M, Garcia-Casillas PE, Chapa-Gonzalez C, Sanchez-Dominguez CN. Nanoparticles for death-induced gene remedy in most cancers (overview). Mol Med Rep. 2018;17:1413–20. https://doi.org/10.3892/mmr.2017.8091.
Lin G, Zhang H, Huang L. Sensible polymeric nanoparticles for most cancers gene supply. Mol Pharm. 2015;12:314–21. https://doi.org/10.1021/mp500656v.
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, et al. Polymeric nanoparticles for nonviral gene remedy prolong mind tumor survival in vivo. ACS Nano. 2015;9:1236–49. https://doi.org/10.1021/nn504905q.
Saga Ok, Kaneda Y. Virosome presents multimodel most cancers remedy with out viral replication. BioMed Res Int. 2013;2013: 764706. https://doi.org/10.1155/2013/764706.
Kaneda Y. Virosome: a novel vector to allow multi-modal methods for most cancers remedy. Adv Drug Deliv Rev. 2012;64:730–8. https://doi.org/10.1016/j.addr.2011.03.007.
Yamada T, Iwasaki Y, Tada H, Iwabuki H, Chuah MKL, VandenDriessche T, Fukuda H, Kondo A, Ueda M, Seno M, et al. Nanoparticles for the supply of genes and medicines to human hepatocytes. Nat Biotechnol. 2003;21:885–90. https://doi.org/10.1038/nbt843.
López AG. Nanotechnology and autoimmunity. El Rosario College Press, 2013.
Serra P, Santamaria P. Nanoparticle-based autoimmune illness remedy. Clin Immunol Orlando Fla. 2015;160:3–13. https://doi.org/10.1016/j.clim.2015.02.003.
He R, Li L, Zhang T, Ding X, Xing Y, Zhu S, Gu Z, Hu H. Current advances of nanotechnology software in autoimmune ailments—a bibliometric evaluation. Nano Immediately. 2023;48: 101694. https://doi.org/10.1016/j.nantod.2022.101694.
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis administration: prognosis, therapy, and therapy monitoring. Int J Pharm. 2021;609: 121137. https://doi.org/10.1016/j.ijpharm.2021.121137.
Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, Massoud EES, Rahman MH, Rojekar S, Cavalu S. Novel nanotechnology-based approaches for focusing on HIV reservoirs. Polymers. 2022;14:3090. https://doi.org/10.3390/polym14153090.
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm. 2019;138:48–63. https://doi.org/10.1016/j.ejpb.2018.06.002.
Lim H, Lee SH, Lee HT, Lee JU, Son JY, Shin W, Heo Y-S. Structural biology of the TNFα antagonists used within the therapy of rheumatoid arthritis. Int J Mol Sci. 2018;19:768. https://doi.org/10.3390/ijms19030768.
Horton S, Walsh C, Emery P. Certolizumab pegol for the therapy of rheumatoid arthritis. Skilled Opin Biol Ther. 2012;12:235–49. https://doi.org/10.1517/14712598.2012.645533.
Yudoh Ok, Karasawa R, Masuko Ok, Kato T. Water-soluble fullerene (C60) inhibits the event of arthritis within the rat mannequin of arthritis. Int J Nanomed. 2009;4:217–25.
de Castro S, Camarasa M-J. Polypharmacology in HIV inhibition: can a drug with simultaneous motion in opposition to two related targets be a substitute for mixture remedy? Eur J Med Chem. 2018;150:206–27. https://doi.org/10.1016/j.ejmech.2018.03.007.
Herskovitz J, Gendelman HE. HIV and the macrophage: from cell reservoirs to drug supply to viral eradication. J Neuroimmune Pharmacol. 2019;14:52–67. https://doi.org/10.1007/s11481-018-9785-6.
Dutta T, Garg M, Jain NK. Concentrating on of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV contaminated macrophages in vitro. Eur J Pharm Sci. 2008;34:181–9. https://doi.org/10.1016/j.ejps.2008.04.002.
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial motion, synthesis, medical purposes, and toxicity results. Int Nano Lett. 2012;2:32. https://doi.org/10.1186/2228-5326-2-32.
Mahendiran B, Azeez NA, Muthusamy S, Krishnakumar GS. Chapter 9—polymer-based bionanomaterials for focused drug supply. In: Barhoum A, Jeevanandam J, Danquah MK, editors. Fundamentals of bionanomaterials; micro and nano applied sciences. Elsevier; 2022. p. 241–71.
Wilczewska AZ, Niemirowicz Ok, Markiewicz KH, Automobile H. Nanoparticles as drug supply methods. Pharmacol Rep. 2012;64:1020–37. https://doi.org/10.1016/S1734-1140(12)70901-5.
Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S. Cytotoxicity analysis and antimicrobial research of starch capped water soluble copper nanoparticles. J Hazard Mater. 2012;201–202:244–9. https://doi.org/10.1016/j.jhazmat.2011.11.077.
Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Superior biofabrication methods for pores and skin regeneration and restore. Nanomed. 2013;8:603–21. https://doi.org/10.2217/nnm.13.50.
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound therapeutic dressings and drug supply methods: a overview. J Pharm Sci. 2008;97:2892–923. https://doi.org/10.1002/jps.21210.
Jurczak F, Dugré T, Johnstone A, Offori T, Vujovic Z, Hollander D. Randomised scientific trial of hydrofiber dressing with silver versus povidone-iodine gauze within the administration of open surgical and traumatic wounds. Int Wound J. 2007;4:66–76. https://doi.org/10.1111/j.1742-481X.2006.00276.x.
Nayak PS, Pradhan S, Arakha M, Kumar D, Saleem M, Mallick B, Jha S. Silver nanoparticles fabricated utilizing medicinal plant extracts present enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnol. 2018;13:193–201. https://doi.org/10.1049/iet-nbt.2018.5025.
Varalakshmi KN, Sangeetha CG, Samee US, Irum G, Lakshmi H, Prachi SP. In vitro security evaluation of the impact of 5 medicinal crops on human peripheral lymphocytes. Trop J Pharm Res. 2011. https://doi.org/10.4314/tjpr.v10i1.66539.
Składanowski M, Golinska P, Rudnicka Ok, Dahm H, Rai M. Analysis of cytotoxicity, immune compatibility and antibacterial exercise of biogenic silver nanoparticles. Med Microbiol Immunol (Berl). 2016;205:603–13. https://doi.org/10.1007/s00430-016-0477-7.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–90. https://doi.org/10.1021/nn800596w.
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitro Int. 2005;19:975–83. https://doi.org/10.1016/j.tiv.2005.06.034.
Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L. A comparative research of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal fashions. Wound Restore Regen. 2007;15:94–104. https://doi.org/10.1111/j.1524-475X.2006.00190.x.
Poon VKM, Burd A. In vitro cytotoxity of silver: implication for scientific wound care. Burns J Int Soc Burn Inj. 2004;30:140–7. https://doi.org/10.1016/j.burns.2003.09.030.
Walker M, Parsons D. The organic destiny of silver ions following the usage of silver-containing wound care merchandise—a overview. Int Wound J. 2012;11:496–504. https://doi.org/10.1111/j.1742-481X.2012.01115.x.
Pratsinis A, Hervella P, Leroux J-C, Pratsinis SE, Sotiriou GA. Toxicity of silver nanoparticles in macrophages. Small. 2013;9:2576–84. https://doi.org/10.1002/smll.201202120.
Mlalila NG, Swai HS, Hilonga A, Kadam DM. Antimicrobial dependence of silver nanoparticles on floor plasmon resonance bands in opposition to Escherichia coli. Nanotechnol Sci Appl. 2017;10:1–9. https://doi.org/10.2147/NSA.S123681.
Riddick TM. Management of colloid stability by zeta potential. Livingston: Wynnewood, Pa; 1968.