Kaplan GG. The worldwide burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–7.
Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL. Worldwide incidence and prevalence of inflammatory bowel illness within the twenty first century: a scientific overview of population-based research. Lancet. 2017;390(10114):2769–78.
Sykora J, Pomahaov R, Kreslov M, Cvalnov D, Tych P, Schwarz J. Present international traits within the incidence of pediatric-onset inflammatory bowel illness. World J Gastroenterol Engl Ed. 2018;24(25):23.
Kaplan GG, Windsor JW. The 4 epidemiological phases within the international evolution of inflammatory bowel illness. Nat Rev Gastroenterol Hepatol. 2021;18(1):56–66.
Bopanna S, Ananthakrishnan AN, Kedia S, Yajnik V, Ahuja V. Danger of colorectal most cancers in Asian sufferers with ulcerative colitis: a scientific overview and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(4):269–76.
Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel illness: medical facets and coverings. J Inflamm Res. 2014;7:113–20.
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an rising remedy modality for most cancers. Nat Rev Drug Discov. 2008;7(9):771–82.
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an rising platform for most cancers remedy. Nano-enabled Med Appl. 2007;2(12):751.
Nunes R, Sarmento B, Reis S, Fonte P. Oral nanotechnological approaches for colon-specific drug supply. In: Nanoparticles in life sciences and biomedicine. Singapore: Jenny Stanford publishing. 2018;133–68.
Yang M, Zhang Y, Ma Y, Yan X, Gong L, Zhang M, Zhang B. Nanoparticle-based therapeutics of inflammatory bowel illnesses: a story overview of the present state and prospects. J Bio-X Res. 2020;3(04):157–73.
Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal irritation: alternatives and challenges. Nanomedicine. 2019;14(19):2631–44.
Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. Intestine permeability and mucosal irritation: dangerous, good or context dependent. Mucosal Immunol. 2017;10(2):307–17.
Youshia J, Lamprecht A. Dimension-dependent nanoparticulate drug supply in inflammatory bowel illnesses. Professional Opin Drug Deliv. 2016;13(2):281–94.
Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol. 2014;20(29):9653.
Craxton A, Magaletti D, Ryan EJ, Clark EA. Macrophage-and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF household ligand BAFF. Blood. 2003;101(11):4464–71.
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal irritation and determination: a possible therapeutic goal in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43.
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and performance in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019;66:1–16.
Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue restore and remodelling. J Pathol. 2013;229(2):176–85.
Kühl AA, Erben U, Kredel LI, Siegmund B. Range of intestinal macrophages in inflammatory bowel illnesses. Entrance Immunol. 2015;6:613.
Wiesolek HL, Bui TM, Lee JJ, Dalal P, Finkielsztein A, Batra A, Thorp EB, Sumagin R. Intercellular adhesion molecule 1 capabilities as an efferocytosis receptor in inflammatory macrophages. Am J Pathol. 2020;190(4):874–85.
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.
Wang Y, Smith W, Hao D, He B, Kong L. M1 and M2 macrophage polarization and doubtlessly therapeutic naturally occurring compounds. Int Immunopharmacol. 2019;70:459–66.
Roda G, Jharap B, Neeraj N, Colombel J-F. Lack of response to anti-TNFs: definition, epidemiology, and administration. Clin Transl Gastroenterol. 2016;7(1): e135.
Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, Gloudemans AK, van’t Wout AB, Korf H, Vermeire S. Anti-TNF remedy in IBD exerts its therapeutic impact via macrophage IL-10 signalling. Intestine. 2020;69(6):1053–63.
Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel illness: up to date experimental and medical proof. Exp Biol Med. 2012;237(5):474–80.
Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of motion, function in illness, and therapeutics. Nat Med. 2015;21(7):677–87.
Husain Ok, Hernandez W, Ansari RA, Ferder L. Irritation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6(3):209.
Yang P, Gu Z, Zhu F, Li Y. Structural and practical tailoring of melanin-like polydopamine radical scavengers. CCS Chem. 2020;2(2):128–38.
Clancy RM, Amin AR, Abramson SB. The function of nitric oxide in irritation and immunity. Arthritis Rheum. 1998;41(7):1141–51.
Tripathi P, Tripathi P, Kashyap L, Singh V. The function of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol. 2007;51(3):443–52.
Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates within the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci. 2000;97(16):8841–8.
Saura M, Zaragoza C, McMillan A, Fast RA, Hohenadl C, Lowenstein JM, Lowenstein CJ. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity. 1999;10(1):21–8.
Li C-Q, Wogan GN. Nitric oxide as a modulator of apoptosis. Most cancers Lett. 2005;226(1):1–15.
Nagy G, Koncz A, Telarico T, Fernandez D, Érsek B, Buzás E, Perl A. Central function of nitric oxide within the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus. Arthritis Res Ther. 2010;12(3):1–6.
Belmont HM, Levartovsky D, Goel A, Amin A, Giorno R, Rediske J, Skovron ML, Abramson SB. Elevated nitric oxide manufacturing accompanied by the up-regulation of inducible nitric oxide synthase in vascular endothelium from sufferers with systemic lupus erythematosus. Arthritis Rheum. 1997;40(10):1810–6.
Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel illness: a common messenger in an unsolved puzzle. Immunology. 2004;113(4):427–37.
Vincent J-L, Zhang H, Szabo C, Preiser J-C. Results of nitric oxide in septic shock. Am J Respir Crit Care Med. 2000;161(6):1781–5.
Stettner N, Rosen C, Bernshtein B, Gur-Cohen S, Frug J, Silberman A, Sarver A, Carmel-Neiderman NN, Eilam R, Biton I. Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon most cancers. Cell Rep. 2018;23(7):1962–76.
Amirshahrokhi Ok. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int Immunopharmacol. 2019;76: 105884.
Ning CY, Zhou ZN, Tan GX, Zhu Y, Mao CB. Electroactive polymers for tissue regeneration: developments and views. Prog Polym Sci. 2018;81:144–62.
Xiao B, Xu ZG, Viennois E, Zhang YC, Zhang Z, Zhang MZ, Han MK, Kang YJ, Merlin D. Orally focused supply of tripeptide KPV by way of hyaluronic acid-functionalized nanoparticles effectively alleviates ulcerative colitis. Mol Ther. 2017;25(7):1628–40.
Kuroki F, Matsumoto T, Iida M. Selenium is depleted in Crohn’s illness on enteral vitamin. Dig Dis. 2003;21(3):266–70.
Mortensen PB, Abildgaard Ok, Fallingborg J. Serum selenium focus in sufferers with ulcerative colitis. Dan Med Bull. 1989;36(6):568–70.
Papp LV, Holmgren A, Khanna KK. Selenium and selenoproteins in well being and illness. Antioxid Redox Sign. 2010;12(7):793–5.
Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, id, and their function in human well being. Antioxid Redox Sign. 2007;9(7):775–806.
Park J, Choi Y, Kim C, Byeon Y, Kim Y, Lee B, Ahn J, Ahn H, Lee J. Self-assembly of pulverized nanoparticles: an method to appreciate large-capacity, long-lasting, and ultra-fast-chargeable Na-ion batteries. Nano Lett. 2021;21(21):9044–51.
Wang Ok. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and secure most cancers immunotherapy. Nat Commun. 2023;14(1):6748.
Huang X, Liu X, Luo Q, Liu J, Shen J. Synthetic selenoenzymes: designed and redesigned. Chem Soc Rev. 2011;40(3):1171–84.
Mugesh G, Singh HB. Artificial organoselenium compounds as antioxidants:glutathione peroxidase exercise. Chem Soc Rev. 2000;29(5):347–57.
Chen X, Zhu X, Gong Y, Yuan G, Liu J. Porous selenium nanozymes focused scavenging ROS synchronize remedy native irritation and sepsis damage. Appl Mater At this time. 2021;22: 100929.
Li T, Pan S, Gao S, Xiang W, Xu H. Diselenide-pemetrexed assemblies for mixed most cancers immuno-, radio-, and chemotherapies. Angew Chem Int Ed. 2020;59(7):2700–4.
Gao S, Li T, Guo Y, Solar C, Xianyu B, Xu H. Selenium-containing nanoparticles mix the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv Mater. 2020;32(12):1907568.
Tasios N, Grigoriadis C, Hansen MR, Wonneberger H, Li C, Spiess HW, Müllen Ok, Floudas G. Self-assembly, dynamics, and part transformation kinetics of donor–acceptor substituted perylene derivatives. J Am Chem Soc. 2010;132(21):7478–87.
Nogueira CW, Zeni G, Rocha J. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104(12):6255–86.
Xu J, Chu T, Yu T, Li N, Wang C, Li C, Zhang Y, Meng H, Nie G. Design of diselenide-bridged hyaluronic acid nano-antioxidant for environment friendly ROS scavenging to alleviate colitis. ACS Nano. 2022;16(8):13037–48.
Yang H, Zhu C, Yuan W. Mannose-rich oligosaccharides-functionalized selenium nanoparticles mediates macrophage reprogramming and irritation decision in ulcerative colitis. Chem Eng J. 2022;435:131715.
Choi SW, Cha BG, Kim J. Therapeutic contact lens for scavenging extreme reactive oxygen species on the ocular floor. ACS Nano. 2020;14(2):2483–96.
Kim JW, Mahapatra C, Hong JY, Kim MS, Leong KW, Kim HW, Hyun JK. Useful restoration of contused spinal twine in rat with the injection of optimal-dosed cerium oxide nanoparticles. Adv Sci. 2017;4(10):1700034.
Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin Ok, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s illness. ACS Nano. 2016;10(2):2860–70.
Kwon HJ, Kim D, Search engine optimization Ok, Kim YG, Han SI, Kang T, Soh M, Hyeon T. Ceria nanoparticle techniques for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s illness. Angew Chem. 2018;57(30):9408–12.
Selvaraj V, Nepal N, Rogers S, Manne NDPK, Arvapalli R, Rice KM, Asano S, Fankenhanel E, Ma JY, Shokuhfar T. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated extreme sepsis. Knowledge Temporary. 2015;4:105–15.
Soh M, Kang DW, Jeong HG, Kim D, Kim DY, Yang W, Music C, Baik S, Choi IY, Ki SK. Ceria-zirconia nanoparticles as enhanced multi-antioxidant for sepsis remedy. Angew Chem Int Ed Engl. 2017;56(38):11399.
Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley Ok, Xu B, Huang Y, Lengthy M, Wang C, Chen J. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel illness. J Nanobiotechnol. 2022;20(1):107.
Zhao S, Li Y, Liu Q, Li S, Cheng Y, Cheng C, Solar Z, Du Y, Butch CJ, Wei H. An orally administered CeO2@montmorillonite nanozyme targets irritation for inflammatory bowel illness remedy. Adv Funct Mater. 2020;30(45):2004692.
Li M, Liu J, Shi L, Zhou C, Zou M, Fu D, Yuan Y, Yao C, Zhang L, Qin S. Gold nanoparticles-embedded ceria with enhanced antioxidant actions for treating inflammatory bowel illness. Bioact Mater. 2023;25:95–106.
Zhao J, Wang Y, Wang W, Tian Y, Gan Z, Wang Y, He H, Chen W, Zhang X, Wu Y, Jia R. In situ development of nano-antioxidants on mobile vesicles for environment friendly reactive oxygen species elimination in acute inflammatory illnesses. Nano At this time. 2021;40:101282.
Yang J, Zhou J, Zhao Y, Zhu L, Luo G, Ge B. Hole CeO2 with ROS-scavenging exercise to alleviate colitis in mice. Int J Nanomed. 2021;16:6889.
Naha PC, Hsu JC, Kim J, Shah S, Bouché M, Si-Mohamed S, Rosario-Berrios DN, Douek P, Hajfathalian M, Yasini P, Singh S. Dextran-coated cerium oxide nanoparticles: a computed tomography distinction agent for imaging the gastrointestinal tract and inflammatory bowel illness. ACS Nano. 2020;14(8):10187–97.
Qin Y, Zhao R, Qin H, Chen L, Chen H, Zhao Y, Nie G. Colonic mucus-accumulating tungsten oxide nanoparticles enhance the colitis remedy by concentrating on Enterobacteriaceae. Nano At this time. 2021;39:101234.
Zhu W, Miyata N, Winter MG, Arenales A, Winter SE. Enhancing of the intestine microbiota reduces carcinogenesis in mouse fashions of colitis-associated colorectal most cancers. J Exp Med. 2019;216(10):2378–93.
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB. Host-mediated irritation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29.
Hughes ER, Winter MG, Duerkop BA, Spiga L, Winter SE. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe. 2017;21(2):208–19.
Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, Lisa B, Romo EDL, Behrendt CL, Lopez CA. Precision enhancing of the intestine microbiota ameliorates colitis. Nature. 2018;553(7687):208–11.
Zhao C, Li J, Wang S, Xu Z, Huang X. Membranization of coacervates into synthetic phagocytes with predation towards micro organism. ACS Nano. 2021;15(6):10048–57.
Yang J, Zhang G, Peng M, Tan S, Ge S, Yang X, Liang Y, Wen Z, Xie L, Zhou T. Bionic regulators break the ecological area of interest of pathogenic micro organism for modulating dysregulated microbiome in colitis. Adv Mater. 2022;34(39):2204650.
Wang J, Tao Z, Tian T, Qiu J, Wang H. Polyoxometalate nanoclusters: a possible preventative and therapeutic drug for inflammatory bowel illness. Chem Eng J. 2021;416(4): 129137.
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic brokers for sort 2 diabetes mellitus. Eur J Med Chem Chimie Therapeutique. 2021;213:113064.
Maikoo S, Chakraborty A, Vukea N, Dingle LMK, Booysen IN. Ruthenium complexes with mono- or bis-heterocyclic chelates: DNA/BSA binding, antioxidant and anticancer research. J Biomol Struct Dyn. 2020;39:1–23.
Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RA, Vavricka SR, Fiocchi C. Environmental triggers in IBD: a overview of progress and proof. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49.
Li J, Chen H, Wang B, Cai C, Yang X, Chai Z, Feng W. ZnO nanoparticles act as supportive remedy in DSS-induced ulcerative colitis in mice by sustaining intestine homeostasis and activating Nrf2 signaling. Sci Rep. 2017;7:43126.
Abou Zaid ES, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI, Haroun RAH. Boswellic acid coated zinc nanoparticles attenuate NF-κB-mediated irritation in DSS-induced ulcerative colitis in rats. Int J Immunopathol Pharmacol. 2023;37:03946320221150720.
Wang J, Mu X, Liu H, Zhang X. Atom precision clusters for most cancers radiotherapy and NIR-II imaging. Nano Biomed Eng. 2018;10(4):325.
Zhang XD, Luo Z, Chen J, Shen X, Music S, Solar Y, Fan S, Fan F, Leong DT, Xie J. Ultrasmall Au(10-12) (SG) (10-12) nanomolecules for prime tumor specificity and most cancers radiotherapy. Adv Mater. 2014;26:4565–8.
Wu D, Fan F, Xie J, Chen J, Zhao J, Liu PX, Fan S, Music SS, Huo S, Zhang XD. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for most cancers radiation remedy. Adv Healthc Mater. 2014;3(1):133–41.
Hussein RM, Hanan S. Promising therapeutic impact of gold nanoparticles in opposition to dinitrobenzene sulfonic acid-induced colitis in rats. Nanomedicine. 2018;13(14):1657–79.
Zhu S, Jiang X, Boudreau MD, Feng G, Miao Y, Dong S, Wu H, Zeng M, Yin JJ. Orally administered gold nanoparticles shield in opposition to colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses however may induce intestine dysbiosis in mice. J Nanobiotechnol. 2018;16:1–18.
Tang B, Xia W, Cai W, Liu J. Luminescent gold nanoparticles with controllable hydrophobic interactions. Nano Lett. 2022;22(20):8109–14.
Zhao J, Gao W, Cai X, Xu J, Zou D, Li Z, Hu B, Zheng Y. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel illness. Theranostics. 2019;9(10):2843.
Zu Y, Yao H, Wang Y, Yan L, Gu Z, Chen C, Gao L, Yin W. The age of bioinspired molybdenum-involved nanozymes: synthesis, catalytic mechanisms, and biomedical functions. View. 2021;2(3):20200188.
Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im H-J, Kang L, Cho SY. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney damage in mice. Nat Commun. 2018;9(1):5421.
Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z. Oral zero-valent-molybdenum nanodots for inflammatory bowel illness remedy. Sci Adv. 2022;8(37): eabp9882.
Guo H, Guo H, Xie Y, Chen Y, Lu C, Yang Z, Zhu Y, Ouyang Y, Zhang Y, Wang X. Mo3Se4 nanoparticle with ROS scavenging and multi-enzyme exercise for the remedy of DSS-induced colitis in mice. Redox Biol. 2022;56: 102441.
Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke Ok, Yang MB, Su BH, Yang W. Redox-mediated synthetic non-enzymatic antioxidant MXene nanoplatforms for acute kidney damage alleviation. Adv Sci. 2021;8(18):2101498.
Hou L, Gong F, Liu B, Yang X, Chen L, Li G, Gong Y, Liang C, Yang N, Shen X. Orally administered titanium carbide nanosheets as anti-inflammatory remedy for colitis. Theranostics. 2022;12(8):3834.
Wang WY, Zhou H, Yang YF, Sang BS, Liu L. Present insurance policies and measures on the event of conventional chinese language medication in China. Pharmacol Res. 2020;163: 105187.
Yuan S, Li Y, Li J, Xue J-C, Wang Q, Hou X-T, Meng H, Nan J-X, Zhang Q-G. Conventional Chinese language medication and pure merchandise: potential approaches for inflammatory bowel illness. Entrance Pharmacol. 2022;13: 892790.
Wang N, Chen W, Cui C, Zheng Y, Yu Q, Ren H, Liu Z, Xu C, Zhang G. The peanut pores and skin procyanidins attenuate DSS-induced ulcerative colitis in C57BL/6 mice. Antioxidants. 2022;11(11):2098.
Wang C, Li J, Han X, Liu S, Gao X, Guo C, Wu X. Silk sericin stabilized proanthocyanidins for synergetic alleviation of ulcerative colitis. Int J Biol Macromol. 2022;220:1021–30.
Zhu X, Tian X, Yang M, Yu Y, Zhou Y, Gao Y, Zhang L, Li Z, Xiao Y, Moses RE. Procyanidin B2 promotes intestinal damage restore and attenuates colitis-associated tumorigenesis by way of suppression of oxidative stress in mice. Antioxid Redox Sign. 2021;35(2):75–92.
Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M. Polyphenol nanoformulations for most cancers remedy: experimental proof and medical perspective. Int J Nanomed. 2017;12:2689.
Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive remedy with bioavailability-boosted curcuminoids in main depressive dysfunction. Phytother Res. 2015;29(1):17–21.
Wei C, Wang J-Y, Xiong F, Wu B-H, Luo M-H, Yu Z-C, Liu T-T, Li D-F, Tang Q, Li Y-X. Curcumin ameliorates DSS-induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol Med Rep. 2021;23(1):1–1.
Gong Z, Zhao S, Zhou J, Yan J, Wang L, Du X, Li H, Chen Y, Cai W, Wu J. Curcumin alleviates DSS-induced colitis by way of inhibiting NLRP3 inflammsome activation and IL-1β manufacturing. Mol Immunol. 2018;104:11–9.
Ohno M, Nishida A, Sugitani Y, Nishino Ok, Inatomi O, Sugimoto M, Kawahara M, Andoh A. Nanoparticle curcumin ameliorates experimental colitis by way of modulation of intestine microbiota and induction of regulatory T cells. PLoS ONE. 2017;12(10): e0185999.
Xiao B, Si X, Zhang M, Merlin D. Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis remedy. Colloids Surf B. 2015;135:379–85.
Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic supply of curcumin in inflammatory bowel illness. Int J Pharm. 2014;473(12):203–12.
Zhu L, Gu P, Shen H. Gallic acid improved irritation by way of NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol. 2019;67:129–37.
Pandurangan AK, Mohebali N, Norhaizan ME, Looi CY. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Des Dev Ther. 2015;9:3923.
Pandurangan AK, Mohebali N, Esa NM, Looi CY, Ismail S, Saadatdoust Z. Gallic acid suppresses irritation in dextran sodium sulfate-induced colitis in mice: potential mechanisms. Int Immunopharmacol. 2015;28(2):1034–43.
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based supply techniques for precision vitamin. Tendencies Meals Sci Technol. 2022;127:63–73.
Zhang X, Zhao X, Tie S, Li J, Su W, Tan M. A wise cauliflower-like service for astaxanthin supply to alleviate colon irritation. J Management Launch. 2022;342:372–87.
Xiao B, Zhang Z, Viennois E, Kang Y, Zhang M, Han MK, Chen J, Merlin D. Mixture remedy for ulcerative colitis: orally focused nanoparticles forestall mucosal harm and relieve irritation. Theranostics. 2016;6(12):2250.
Zhang C, Xu Y, Wu S, Zheng W, Music S, Ai C. Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its useful impact on dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol. 2022;205:396–409.
Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, Ganapasam S. Luteolin, a bioflavonoid inhibits azoxymethane-induced colorectal most cancers via activation of Nrf2 signaling. Toxicol Mech Strategies. 2014;24(1):13–20.
Li B-L, Zhao D-Y, Du P-L, Wang X-T, Yang Q, Cai Y-R. Luteolin alleviates ulcerative colitis via SHP-1/STAT3 pathway. Inflamm Res. 2021;70(6):705–17.
Tan C, Fan H, Ding J, Han C, Guan Y, Zhu F, Wu H, Liu Y, Zhang W, Hou X. ROS-responsive nanoparticles for oral supply of luteolin and focused remedy of ulcerative colitis by regulating pathological microenvironment. Mater At this time Bio. 2022;14: 100246.
Chessa M, Caddeo C, Valenti D, Manconi M, Sinico C, Fadda AM. Impact of penetration enhancer containing vesicles on the percutaneous supply of quercetin via new born pig pores and skin. Pharmaceutics. 2011;3(3):497–509.
Guazelli CFS, Fattori V, Colombo BB, Georgetti SR, Vicentini FTMC, Casagrande R, Baracat MM, Verri WA Jr. Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J Nat Prod. 2013;76(2):200–8.
Caddeo C, Nácher A, Díez-Gross sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan–xanthan gum microparticle-based oral pill for colon-targeted and sustained supply of quercetin. J Microencapsul. 2014;31(7):694–9.
Castangia I, Nácher A, Caddeo C, Merino V, Díez-Gross sales O, Catalán-Latorre A, Fernàndez-Busquets X, Fadda AM, Manconi M. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the remedy of experimental colitis in rats. Acta Biomater. 2015;13:216–27.
Liu Q, Liu H, Fan Y. Preparation of silk fibroin carriers for managed launch. Microsc Res Tech. 2017;80(3):312–20.
Lozano-Perez AA, Rodriguez-Nogales A, Ortiz-Cullera V, Algieri F, Garrido-Mesa J, Zorrilla P, Rodriguez-Cabezas ME, Garrido-Mesa N, Utrilla MP, De Matteis L. Silk fibroin nanoparticles represent a vector for managed launch of resveratrol in an experimental mannequin of inflammatory bowel illness in rats. Int J Nanomed. 2014;9:4507.
Crivelli B, Bari E, Perteghella S, Catenacci L, Sorrenti M, Mocchi M, Faragò S, Tripodo G, Prina-Mello A, Torre ML. Silk fibroin nanoparticles for celecoxib and curcumin supply: ROS-scavenging and anti inflammatory actions in an in vitro mannequin of osteoarthritis. Eur J Pharm Biopharm. 2019;137:37–45.
Diez-Echave P, Ruiz-Malagón AJ, Molina-Tijeras JA, Hidalgo-García L, Vezza T, Cenis-Cifuentes L, Rodríguez-Sojo MJ, Cenis JL, Rodríguez-Cabezas ME, Rodríguez-Nogales A. Silk fibroin nanoparticles improve quercetin immunomodulatory properties in DSS-induced mouse colitis. Int J Pharm. 2021;606: 120935.
Wang X, Xie L, Lengthy J, Liu Ok, Lu J, Liang Y, Cao Y, Dai X, Li X. Therapeutic impact of baicalin on inflammatory bowel illness: a overview. J Ethnopharmacol. 2022;283: 114749.
Zhu W, Jin Z, Yu J, Liang J, Yang Q, Li F, Shi X, Zhu X, Zhang X. Baicalin ameliorates experimental inflammatory bowel illness via polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26.
Zhu L, Xu L-Z, Zhao S, Shen Z-F, Shen H, Zhan L-B. Protecting impact of baicalin on the regulation of Treg/Th17 stability, intestine microbiota and short-chain fatty acids in rats with ulcerative colitis. Appl Microbiol Biotechnol. 2020;104:5449–60.
Dai SX, Zou Y, Feng YL, Liu HB, Zheng XB. Baicalin down-regulates the expression of macrophage migration inhibitory issue (MIF) successfully for rats with ulcerative colitis. Phytother Res. 2012;26(4):498–504.
Shen J, Cheng J, Zhu S, Zhao J, Ye Q, Xu Y, Dong H, Zheng X. Regulating impact of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis. Int Immunopharmacol. 2019;73:193–200.
Zhu L, Shen H, Gu PQ, Liu YJ, Zhang L, Cheng JF. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation. Exp Ther Med. 2020;20(1):581–90.
Liang S, Deng X, Lei L, Zheng Y, Ai J, Chen L, Xiong H, Mei Z, Cheng Y-C, Ren Y. The comparative research of the therapeutic results and mechanism of baicalin, baicalein, and their mixture on ulcerative colitis rat. Entrance Pharmacol. 2019;10:1466.
Zhao L, Chen Z, Zhao Q, Wang D, Hu R, You Q, Guo Q. Developmental toxicity and genotoxicity research of wogonin. Regul Toxicol Pharmacol. 2011;60(2):212–7.
Nguyen T-HT, Trinh N-T, Tran HN, Tran HT, Le PQ, Ngo D-N, Tran-Van H, Van Vo T, Vong LB, Nagasaki Y. Bettering silymarin oral bioavailability utilizing silica-installed redox nanoparticle to suppress inflammatory bowel illness. J Management Launch. 2021;331:515–24.
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, Xie J. Kaempferol alleviates murine experimental colitis by restoring intestine microbiota and inhibiting the LPS-TLR4-NF-κB axis. Entrance Immunol. 2021;12: 679897.
Ma Z, Du B, Li J, Yang Y, Zhu F. An perception into anti-inflammatory actions and irritation associated illnesses of anthocyanins: a overview of each in vivo and in vitro investigations. Int J Mol Sci. 2021;22(20):11076.
Monk JM, Wu W, Hutchinson AL, Pauls P, Robinson LE, Energy KA. Navy and black bean supplementation attenuates colitis-associated irritation and colonic epithelial harm. J Nutr Biochem. 2018;56:215–23.
Bibi S, Kang Y, Du M, Zhu M-J. Dietary crimson raspberries attenuate dextran sulfate sodium-induced acute colitis. J Nutr Biochem. 2018;51:40–6.
Turksen Ok, Troy T-C. Boundaries constructed on claudins. J Cell Sci. 2004;117(12):2435–47.
Al-Asmakh M, Hedin L. Microbiota and the management of blood-tissue obstacles. Tissue Boundaries. 2015;3(3): e1039691.
Morita Ok, Furuse M, Fujimoto Ok, Tsukita S. Claudin multigene household encoding four-transmembrane area protein elements of tight junction strands. Proc Natl Acad Sci. 1999;96(2):511–6.
Umeda Ok, Matsui T, Nakayama M, Furuse Ok, Sasaki H, Furuse M, Tsukita S. Institution and characterization of cultured epithelial cells missing expression of ZO-1. J Biol Chem. 2004;279(43):44785–94.
Groschwitz KR, Hogan SP. Intestinal barrier perform: molecular regulation and illness pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20.
Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X. Intestine microbiota modulation and anti inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med. 2019;136:96–108.
Pereira SR, Pereira R, Figueiredo I, Freitas V, Dinis TCP, Almeida LM. Comparability of anti-inflammatory actions of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat mannequin. PLoS ONE. 2017;12(3): e0174116.
Zhao L, Zhang Y, Liu G, Hao S, Wang C, Wang Y. Black rice anthocyanin-rich extract and rosmarinic acid, alone and together, shield in opposition to DSS-induced colitis in mice. Meals Funct. 2018;9(5):2796–808.
Chen T, Hu S, Zhang H, Guan Q, Yang Y, Wang X. Anti-inflammatory results of Dioscorea alata L. anthocyanins in a TNBS-induced colitis mannequin. Meals Funct. 2017;8(2):659–69.
Mo J, Ni J, Zhang M, Xu Y, Li Y, Karim N, Chen W. Mulberry anthocyanins ameliorate DSS-induced ulcerative colitis by enhancing intestinal barrier perform and modulating intestine microbiota. Antioxidants. 2022;11(9):1674.
Gowd V, Jori C, Chaudhary AA, Rudayni HA, Khan R. Resveratrol and resveratrol nano-delivery techniques within the remedy of inflammatory bowel illness. J Nutr Biochem. 2022;109: 109101.
Niu W, Chen X, Xu R, Dong H, Yang F, Wang Y, Zhang Z, Ju J. Polysaccharides from pure sources exhibit nice potential within the remedy of ulcerative colitis: a overview. Carbohydr Polym. 2021;254: 117189.
Cui M, Fang Z, Music M, Zhou T, Wang Y, Liu Ok. Phragmites rhizoma polysaccharide-based nanocarriers for synergistic remedy of ulcerative colitis. Int J Biol Macromol. 2022;220:22–32.
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory results, pharmacokinetic properties and medical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin. 2018;39(5):787–801.
Maxwell T, Lee KS, Kim S, Nam Ok-S. Arctigenin inhibits the activation of the mTOR pathway, leading to autophagic cell loss of life and decreased ER expression in ER-positive human breast most cancers cells. Int J Oncol. 2018;52(4):1339–49.
Tao Y, Qiao SM, Lv CJ, Yun XM, Yue MF, Fang YL, Wei ZF, Dai Y, Xia YF. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel illnesses by inhibiting goblet cell apoptosis by way of the ERβ/TRIM21/PHB1 pathway. Phytother Res. 2022;36(8):3248–64.
Wu X, Dou Y, Yang Y, Bian D, Luo J, Tong B, Xia Y, Dai Y. Arctigenin exerts anti-colitis efficacy via inhibiting the differentiation of Th1 and Th17 cells by way of an mTORC1-dependent pathway. Biochem Pharmacol. 2015;96(4):323–36.
Guan F, Luo H, Wu J, Li M, Chen L, Huang N, Wei G, Nie J, Chen B, Su Z. Andrographolide sodium bisulfite ameliorates dextran sulfate sodium-induced colitis and liver damage in mice by way of inhibiting macrophage proinflammatory polarization from the gut-liver axis. Int Immunopharmacol. 2022;110: 109007.
Zhu Q, Zheng P, Chen X, Zhou F, He Q, Yang Y. Andrographolide presents therapeutic impact on ulcerative colitis via the inhibition of IL-23/IL-17 axis. Am J Transl Res. 2018;10(2):465.
Zhang L, Cao N, Wang Y, Wang Y, Wu C, Cheng X, Wang C. Enchancment of oxazolone-induced ulcerative colitis in rats utilizing andrographolide. Molecules. 2019;25(1):76.
Li C, Xi Y, Li S, Zhao Q, Cheng W, Wang Z, Zhong J, Niu X, Chen G. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol Immunol. 2015;67(2):444–54.
Liu Y, Liu X, Hua W, Wei Q, Fang X, Zhao Z, Ge C, Liu C, Chen C, Tao Y. Berberine inhibits macrophage M1 polarization by way of AKT1/SOCS1/NF-κB signaling pathway to guard in opposition to DSS-induced colitis. Int Immunopharmacol. 2018;57:121–31.
Zhao L, Du X, Tian J, Kang X, Li Y, Dai W, Li D, Zhang S, Li C. Berberine-loaded carboxylmethyl chitosan nanoparticles ameliorate DSS-induced colitis and transform intestine microbiota in mice. Entrance Pharmacol. 2021;12: 644387.
Jing W, Dong S, Luo X, Liu J, Wei B, Du W, Yang L, Luo H, Wang Y, Wang S. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites. Pharmacol Res. 2021;164: 105358.
Jing W, Safarpour Y, Zhang T, Guo P, Chen G, Wu X, Fu Q, Wang Y. Berberine upregulates P-glycoprotein in human Caco-2 cells and in an experimental mannequin of colitis within the rat by way of activation of Nrf2-dependent mechanisms. J Pharmacol Exp Ther. 2018;366(2):332–40.
Luo R, Lin M, Fu C, Zhang J, Chen Q, Zhang C, Shi J, Pu X, Dong L, Xu H. Calcium pectinate and hyaluronic acid modified lactoferrin nanoparticles loaded rhein with dual-targeting for ulcerative colitis remedy. Carbohydr Polym. 2021;263: 117998.