Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum applied sciences utilizing cells of 5-to-50 qubits with very lossy and noisy photonic hyperlinks. Phys. Rev. X 4, 041041 (2014).
Monroe, C. et al. Giant-scale modular quantum-computer structure with atomic reminiscence and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead fault-tolerant quantum computing utilizing long-range connectivity. Sci. Adv. 8, eabn1717 (2022).
Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger-Horne-Zeilinger states to ballistic common quantum computation. Phys. Rev. Lett. 115, 020502 (2015).
Stephenson, L. J. et al. Excessive-rate, high-fidelity entanglement of qubits throughout an elementary quantum community. Phys. Rev. Lett. 124, 110501 (2020).
Postler, L. et al. Demonstration of fault-tolerant common quantum gate operations. Nature 605, 675–680 (2022).
Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).
Bergeron, L. et al. Silicon-integrated telecommunications photon-spin interface. PRX Quantum 1, 020301 (2020).
Christle, D. J. et al. Remoted spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).
Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).
Raha, M. et al. Optical quantum nondemolition measurement of a single uncommon earth ion qubit. Nat. Commun. 11, 1605 (2020).
Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).
De Greve, Okay. et al. Ultrafast coherent management and suppressed nuclear suggestions of a single quantum dot gap qubit. Nat. Phys. 7, 872–878 (2011).
Godden, T. M. et al. Coherent optical management of the spin of a single gap in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).
Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).
Pompili, M. et al. Realization of a multinode quantum community of distant solid-state qubits. Science 372, 259–264 (2021).
Schwartz, I. et al. Deterministic era of a cluster state of entangled photons. Science 354, 434–437 (2016).
Istrati, D. et al. Sequential era of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).
Wang, H. et al. In direction of optimum single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).
Liu, J. et al. A solid-state supply of strongly entangled photon pairs with excessive brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).
Tomm, N. et al. A vibrant and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Appel, M. H. et al. Coherent spin-photon interface with waveguide induced biking transitions. Phys. Rev. Lett. 126, 013602 (2021).
Thomas, S. E. et al. Shiny polarized single-photon supply based mostly on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).
Varnava, M., Browne, D. E. & Rudolph, T. How good should single photon sources and detectors be for environment friendly linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
Pant, M., Towsley, D., Englund, D. & Guha, S. Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070 (2019).
Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Full quantum management of a single quantum dot spin utilizing ultrafast optical pulses. Nature 456, 218–221 (2008).
De Greve, Okay. et al. Quantum-dot spin–photon entanglement through frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).
Appel, M. H. et al. Entangling a gap spin with a time-bin photon: a waveguide method for quantum dot sources of multiphoton entanglement. Phys. Rev. Lett. 128, 233602 (2022).
Delteil, A. et al. Era of heralded entanglement between distant gap spins. Nat. Phys. 12, 218–223 (2016).
Stockill, R. et al. Part-tuned entangled state era between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).
Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).
Taylor, J. M., Marcus, C. M. & Lukin, M. D. Lengthy-lived reminiscence for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).
Denning, E. V., Gangloff, D. A., Atatüre, M., Mørk, J. & Le Gall, C. Collective quantum reminiscence activated by a pushed central spin. Phys. Rev. Lett. 123, 140502 (2019).
Stockill, R. et al. Quantum dot spin coherence ruled by a strained nuclear setting. Nat. Commun. 7, 12745 (2016).
Gong, Q., Offermans, P., Nötzel, R., Koenraad, P. M. & Wolter, J. H. Capping strategy of InAs/GaAs quantum dots studied by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 85, 5697 (2004).
Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically energetic quantum dot. Nat. Phys. 11, 1005–1008 (2015).
Covre da Silva, S. F. et al. GaAs quantum dots grown by droplet etching epitaxy as quantum gentle sources. Appl. Phys. Lett. 119, 120502 (2021).
Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404–2410 (2019).
Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).
Chekhovich, E. A., Covre da Silva, S. F. & Rastelli, A. Nuclear spin quantum register in an optically energetic semiconductor quantum dot. Nat. Nanotechnol. 15, 999–1004 (2020).
Schimpf, C., Manna, S., Covre da Silva, S. F., Aigner, M. & Rastelli, A. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature as much as 20 Okay. Adv. Photon. 3, 065001 (2021).
Kuhlmann, A. V. et al. Cost noise and spin noise in a semiconductor quantum gadget. Nat. Phys. 9, 570–575 (2013).
Gillard, G. et al. Elementary limits of electron and nuclear spin qubit lifetimes in an remoted self-assembled quantum dot. npj Quantum Inf. 7, 43 (2021).
Bodey, J. H. et al. Optical spin locking of a solid-state qubit. npj Quantum Inf. 5, 95 (2019).
Cywiński, Ł., Witzel, W. M. & Das Sarma, S. Pure quantum dephasing of a solid-state electron spin qubit in a big nuclear spin tub coupled by long-range hyperfine-mediated interactions. Phys. Rev. B 79, 245314 (2009).
Botzem, T. et al. Quadrupolar and anisotropy results on dephasing in two-electron spin qubits in GaAs. Nat. Commun. 7, 11170 (2016).
Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear tub exceeding 200 μs. Nat. Phys. 7, 109–113 (2011).
Malinowski, F. Okay. et al. Notch filtering the nuclear setting of a spin qubit. Nat. Nanotechnol. 12, 16–20 (2016).
Malinowski, F. Okay. et al. Spectrum of the nuclear setting for GaAs spin qubits. Phys. Rev. Lett. 118, 177702 (2017).
de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Common dynamical decoupling of a single solid-state spin from a spin tub. Science 330, 60–63 (2010).
Huthmacher, L. et al. Coherence of a dynamically decoupled quantum-dot gap spin. Phys. Rev. B 97, 241413 (2018).
Ragunathan, G. Nuclear Spin Phenomena in III-V and II-VI Semiconductor Quantum Dots. PhD thesis, College of Sheffield (2019).
Ulhaq, A. et al. Vanishing electron g issue and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots. Phys. Rev. B 93, 165306 (2016).
Chekhovich, E. A., Hopkinson, M., Skolnick, M. S. & Tartakovskii, A. I. Suppression of nuclear spin tub fluctuations in self-assembled quantum dots induced by inhomogeneous pressure. Nat. Commun. 6, 6348 (2015).
Knijn, P. J. et al. A solid-state NMR and DFT research of compositional modulations in AlxGa1−xAs. Phys. Chem. Chem. Phys. 12, 11517–11535 (2010).
Chekhovich, E. A. et al. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots. Nat. Mater. 16, 982–986 (2017).
van Bree, J. et al. Anisotropy of electron and gap g tensors of quantum dots: an intuitive image based mostly on spin-correlated orbital currents. Phys. Rev. B 93, 035311 (2016).
Wolters, J. et al. Easy atomic quantum reminiscence appropriate for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).
Heyn, C. et al. Extremely uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009).
Atkinson, P., Zallo, E. & Schmidt, O. G. Unbiased wavelength and density management of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 112, 054303 (2012).
Huo, Y. H., Rastelli, A. & Schmidt, O. G. Extremely-small excitonic tremendous construction splitting in extremely symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 102, 152105 (2013).
Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface utilizing laser spectroscopy on a close-by InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).
Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).
Chekhovich, E. A. et al. Cross calibration of deformation potentials and gradient-elastic tensors of GaAs utilizing photoluminescence and nuclear magnetic resonance spectroscopy in GaAs/AlGaAs quantum dot buildings. Phys. Rev. B 97, 235311 (2018).
Neder, I. et al. Semiclassical mannequin for the dephasing of a two-electron spin qubit coupled to a coherently evolving nuclear spin tub. Phys. Rev. B 84, 035441 (2011).