Qiao, P. Z., Yang, M. J. & Bobaru, F. Affect mechanics and high-energy absorbing supplies: assessment. J. Aerosp. Eng. 21, 235–248 (2008).
Dyatkin, B. US hypersonics initiatives require accelerated efforts of the supplies analysis neighborhood. MRS Bull. 46, 201–203 (2021).
Viana, J. C. Polymeric supplies for impression and vitality dissipation. Plast. Rubber Compos. 35, 260–267 (2006).
Park, J. L., Chi, Y. S., Hahn, M. H. & Kang, T. J. Kinetic dissipation in ballistic exams of sentimental physique armors. Exp. Mech. 52, 1239–1250 (2012).
Fejdys, M., Kosla, Okay., Kucharska-Jastrzabek, A. & Landwijt, M. Affect of ceramic properties on the ballistic efficiency of the hybrid ceramic-multi-layered UHMWPE composite armour. J. Aust. Ceram. Soc. 57, 149–161 (2021).
Reis, R. H. M. et al. Ballistic efficiency of guaruman fiber composites in multilayered armor system and as single goal. Polymers 13, 1203 (2021).
Wen, Y. Okay., Xu, C., Wang, S. & Batra, R. C. Evaluation of behind the armor ballistic trauma. J. Mech. Behav. Biomed. Mater. 45, 11–21 (2015).
Kearsley, A. T. How laboratory hypervelocity impression experiments have helped us to grasp comet mud samples: a short assessment. Procedia Eng. 204, 43–50 (2017).
Woignier, T., Duffours, L., Colombel, P. & Durin, C. Aerogels supplies as area particles collectors. Adv. Mater. Sci. Eng. 2013, 484153 (2013).
Jones, S. M., Anderson, M. S., Dominguez, G. & Tsapin, A. Thermal calibrations of hypervelocity seize in aerogel utilizing magnetic iron oxide particles. Icarus 226, 1–9 (2013).
Alwin, S. & Shajan, X. S. Aerogels: promising nanostructured supplies for vitality conversion and storage purposes. Mater. Renew. Maintain. Power 9, 7 (2020).
Bheekhun, N., Abu Talib, A. & Hassan, M. R. Aerogels in aerospace: an outline. Adv. Mater. Sci. Eng. 2013, 406065 (2013).
Kan, A. & Joshi, N. S. In direction of the directed evolution of protein supplies. MRS Commun. 9, 441–455 (2019).
Wu, J. H. et al. Rationally designed artificial protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 620 (2018).
Fang, J. et al. Compelled protein unfolding results in extremely elastic and difficult protein hydrogels. Nat. Commun. 4, 2974 (2013).
Zhu, F. B. et al. 3D-printed ultratough hydrogel buildings with titin-like domains. ACS Appl. Mater. Interfaces 9, 11363–11367 (2017).
Bate, N. et al. Talin incorporates a C-terminal calpain2 cleavage web site vital in focal adhesion dynamics. PLoS ONE 7, e34461 (2012).
Yao, M. X. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).
Funtan, S., Michael, P. & Binder, W. H. Synthesis and mechanochemical exercise of peptide-based Cu(I) bis(N-heterocyclic carbene) complexes. Biomimetics 4, 24 (2019).
Goult, B. T. et al. RIAM and vinculin binding to talin are mutually unique and regulate adhesion meeting and turnover. J. Biol. Chem. 288, 8238–8249 (2013).
Schon, A., Clarkson, B. R., Jaime, M. & Freire, E. Temperature stability of proteins: evaluation of irreversible denaturation utilizing isothermal calorimetry. Proteins Struct. Funct. Bioinform. 85, 2009–2016 (2017).
Jackson, M. & Mantsch, H. H. The use and misuse of FTIR spectroscopy within the willpower of protein-structure. Crit. Rev. Biochem. Mol. Biol. 30, 95–120 (1995).
Öhrlund, Å. Analysis of rheometry amplitude sweep cross-over level as an index of flexibility for HA fillers. J. Cosmet. Dermatol. Sci. Appl. 8, 47–54 (2018).
Kulkarni, V. S. & Shaw, C. in Important Chemistry for Formulators of Semisolid and Liquid Dosages (eds Kulkarni, V. S. & Shaw, C.) 145–182 (Tutorial Press, 2016).
Wen, Q. & Janmey, P. A. Polymer physics of the cytoskeleton. Curr. Opin. Stable State Mater. Sci. 15, 177–182 (2011).
Yao, M. X. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).
Williamsen, J., Pechkis, D., Balakrishnan, A. & Ouelette, S. In Proc. First Worldwide Orbital Particles Convention (Lunar and Planetary Institute, 2019).
Couldrick, C. in Advances in Navy Textiles and Private Tools (ed. Sparks, E.) 196–212 (Woodhead Publishing, 2012).
Veysset, D. et al. Excessive-velocity micro-particle impression on gelatin and artificial hydrogel. J. Mech. Behav. Biomed. Mater. 86, 71–76 (2018).
Kokol, V., Pottathara, Y. B., Mihelčič, M. & Perše, L. S. Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling charges throughout 3D cryo-printing. Colloids Surf. A 616, 126356 (2021).
Barnett, S. F. H. & Goult, B. T. The MeshCODE to scale–visualising synaptic binary data. Entrance. Cell. Neurosci. 16, 1014629 (2022).
Dedden, D. et al. The structure of Talin1 reveals an autoinhibition mechanism. Cell 179, 120–131 (2019).
Fillingham, I. et al. A vinculin binding area from the talin rod unfolds to kind a posh with the vinculin head. Construction 13, 65–74 (2005).
Burchell, M. J., Cole, M. J., McDonnell, J. A. M. & Zarnecki, J. C. Hypervelocity impression research utilizing the two MV Van de Graaff accelerator and two-stage gentle gasoline gun of the College of Kent at Canterbury. Meas. Sci. Technol. 10, 41–50 (1999).
Hibbert, R., Cole, M. J., Value, M. C. & Burchell, M. J. The hypervelocity impression facility on the College of Kent: current upgrades and specialised capabilities. Procedia Eng. 204, 208–214 (2017).