Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition metallic dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted WSe2 bilayers. Phys. Rev. B 104, 125440 (2021).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Gao, Y. et al. Band engineering of large-twist-angle graphene/h-BN moiré superlattices with strain. Phys. Rev. Lett. 125, 226403 (2020).
Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).
Utama, M. et al. Visualization of the flat digital band in twisted bilayer graphene close to the magic angle twist. Nat. Phys. 17, 184–188 (2021).
Righi, A. et al. Graphene moiré patterns noticed by Umklapp double-resonance Raman scattering. Phys. Rev. B 84, 241409 (2011).
Carozo, V. et al. Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011).
Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Stable State Commun. 175, 3–12 (2013).
Eliel, G. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).
Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).
Parzefall, P. et al. Moiré phonons in twisted MoSe2–WSe2 heterobilayers and their correlation with interlayer excitons. 2D Mater. 8, 035030 (2021).
Lin, Okay.-Q. et al. Giant-scale mapping of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 33, 2008333 (2021).
Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).
Liu, Okay. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).
Tateiwa, N. & Haga, Y. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instrum. 80, 123901 (2009).
Feng, Y., Jaramillo, R., Wang, J., Ren, Y. & Rosenbaum, T. Invited article: high-pressure strategies for condensed matter physics at low temperature. Rev. Sci. Instrum. 81, 041301 (2010).
Nayak, A. P. et al. Stress-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 15, 346–353 (2015).
Machon, D. et al. Raman scattering research of graphene below excessive strain. J. Raman Spectrosc. 49, 121–129 (2018).
Alencar, R. S. et al. Atomic-layered MoS2 on SiO2 below excessive strain: bimodal adhesion and biaxial pressure results. Phys. Rev. Mater. 1, 024002 (2017).
Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).
Kim, J. et al. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nat. Mater. 21, 890–895 (2022).
Gong, C. et al. Band alignment of two-dimensional transition metallic dichalcogenides: utility in tunnel discipline impact transistors. Appl. Phys. Lett. 103, 053513 (2013).
Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).
Thygesen, Okay. S. Calculating excitons, plasmons, and quasiparticles in 2D supplies and van der Waals heterostructures. 2D Mater. 4, 022004 (2017).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der waals heterostructures. Nature 567, 81–86 (2019).
Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).
McDonnell, L. P. et al. Superposition of intra- and inter-layer excitons in twistronic MoSe2/WSe2 bilayers probed by resonant Raman scattering. 2D Mater. 8, 035009 (2021).
Ferreira, F., Magorrian, S. J., Enaldiev, V. V., Ruiz-Tijerina, D. A. & Fal’ko, V. I. Band vitality landscapes in twisted homobilayers of transition metallic dichalcogenides. Appl. Phys. Lett. 118, 241602 (2021).
Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metallic dichalcogenides. Nat. Commun. 7, 13279 (2016).
Enaldiev, V., Ferreira, F., Magorrian, S. & Fal’ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).
Carvalho, B. R. et al. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).
Pimenta Martins, L. G. et al. Digital band tuning and multivalley Raman scattering in monolayer transition metallic dichalcogenides at excessive pressures. ACS Nano 16, 8064–8075 (2022).
Park, J.-H. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Strategies 5, 2000720 (2021).
Arora, A. et al. Excitonic resonances in skinny movies of WSe2: from monolayer to bulk materials. Nanoscale 7, 10421–10429 (2015).
Vaquero, D. et al. Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Commun. Phys. 3, 194 (2020).
Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).
Wang, J. I.-J. et al. Digital transport of encapsulated graphene and WSe2 units fabricated by pick-up of prepatterned hBN. Nano Lett. 15, 1898–1903 (2015).
Martins, L. G. P. et al. Onerous, clear, sp3-containing 2D part shaped from few-layer graphene below compression. Carbon 173, 744–757 (2021).
Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).
Kozawa, D. et al. Photocarrier rest pathway in two-dimensional semiconducting transition metallic dichalcogenides. Nat. Commun. 5, 4543 (2014).
Viner, J. J. S. et al. Excited Rydberg states in MoSe2/WSe2 heterostructures. 2D Mater. 8, 035047 (2021).
Pisoni, R. et al. Interactions and magnetotransport by way of spin-valley coupled Landau ranges in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).
Nguyen, P. V. et al. Visualizing electrostatic gating results in two-dimensional heterostructures. Nature 572, 220–223 (2019).
Gustafsson, M. V. et al. Ambipolar Landau ranges and powerful band-selective service interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).
Hohenberg, P. & Kohn, W. Inhomogeneous electron fuel. Phys. Rev. 136, B864 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).
Soler, J. M. et al. The SIESTA technique for ab initio order-N supplies simulation. J. Phys.: Condens. Matter 14, 2745 (2002).
Troullier, N. & Martins, J. L. Environment friendly pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).
Kleinman, L. & Bylander, D. Efficacious kind for mannequin pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Moreno, J. & Soler, J. M. Optimum meshes for integrals in real- and reciprocal-space unit cells. Phys. Rev. B 45, 13891–13898 (1992).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Togo, A. & Tanaka, I. First ideas phonon calculations in supplies science. Scr. Mater. 108, 1–5 (2015).
Pimenta Martins, L. G. et al. Dataset for pressure-tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons. Zenodo https://doi.org/10.5281/zenodo.7872421 (2023).