Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).
Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (2010).
Nandkishore, R. & Levitov, L. Quantum anomalous Corridor state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).
Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Corridor states in chirally stacked few-layer graphene programs. Phys. Rev. Lett. 4, 156801 (2011).
Vafek, O. & Yang, Okay. Many-body instability of Coulomb interacting bilayer graphene: renormalization group method. Phys. Rev. B 81, 041401 (2010).
Zhang, Y. et al. Landau-level splitting in graphene in excessive magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Zondiner, U. et al. Cascade of section transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).
Wong, D. et al. Cascade of digital transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).
Velasco, J. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).
Lee, Y. et al. Competitors between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).
Myhro, Okay. et al. Massive tunable intrinsic hole in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).
Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).
Koshino, M. Interlayer screening impact in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81, 125304 (2010).
Aoki, M. & Amawashi, H. Dependence of band constructions on stacking and discipline in layered graphene. Strong State Commun. 142, 123–127 (2007).
Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band construction of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).
Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).
Ju, L. et al. Topological valley transport at bilayer graphene area partitions. Nature 520, 650–655 (2015).
Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).
Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).
Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional supplies. Nano Lett. 18, 8011–8015 (2018).
Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Damaged-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).
Zhang, Y. et al. Direct remark of a extensively tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
Maher, P. et al. Proof for a spin section transition at cost neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).
Jung, J. & MacDonald, A. H. Gapped damaged symmetry states in ABC-stacked trilayer graphene. Phys. Rev. B 88, 075408 (2013).
Jung, J., Zhang, F. & MacDonald, A. H. Lattice concept of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Corridor states. Phys. Rev. B 83, 115408 (2011).
Xiao, D., Yao, W. & Niu, Q. Valley contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
Feldman, B. E. Damaged-symmetry states and divergent resistance in suspended bilayer graphene. Nat. Phys. 5, 889–893 (2009).
Shi, Y. et al. Digital section separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).
Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. A 165, 372–414 (1997).
Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).
de la Barrera, S. C. et al. Cascade of isospin section transitions in Bernal-stacked bilayer graphene at zero magnetic discipline. Nat. Phys. 18, 771–775 (2022).
Zhou, H., Xie, T., Taniguchi, T., Watanabe, Okay. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).
Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01520-1 (2023).
Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moiré superlattices. Phys. Rev. B 108, 155406 (2023).
Szabo, A. & Ostlund, N. S. Fashionable Quantum Chemistry: Introduction to Superior Digital Construction Principle 1st edn (Dover Publications, 1996).