Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by robust coupling to hoover fields. Science 373, eabd0336 (2021).
Basov, D., Fogler, M. & De Abajo, F. J. G. Polaritons in van der Waals supplies. Science 354, 6309 (2016).
Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010).
Sanvitto, D. & Kéna-Cohen, S. The highway in direction of polaritonic gadgets. Nat. Mater. 15, 1061–1073 (2016).
Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its affect on superconductivity. Sci. Adv. 4, eaau6969 (2018).
Ashida, Y. et al. Quantum electrodynamic management of matter: cavity-enhanced ferroelectric section transition. Phys. Rev. X 10, 041027 (2020).
Thomas, A. et al. Massive enhancement of ferromagnetism underneath a collective robust coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure gadgets. Science 363, 6428 (2019).
Liu, S. et al. Direct remark of magnon–phonon robust coupling in two-dimensional antiferromagnet at excessive magnetic fields. Phys. Rev. Lett. 127, 097401 (2021).
Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).
Hwangbo, Ok. et al. Extremely anisotropic excitons and a number of phonon sure states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).
Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).
Belvin, C. A. et al. Exciton-driven antiferromagnetic steel in a correlated van der Waals insulator. Nat. Commun. 12, 4837 (2021).
Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic floor state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).
Kim, S. Y. et al. Cost-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).
Gnatchenko, S., Kachur, I., Piryatinskaya, V., Vysochanskii, Y. M. & Gurzan, M. Exciton–magnon construction of the optical absorption spectrum of antiferromagnetic MnPS3. Low. Temp. Phys. 37, 144–148 (2011).
Kudlacik, D. et al. Exciton and exciton–magnon photoluminescence within the antiferromagnet CuB2O4. Phys. Rev. B 102, 035128 (2020).
Tartakovskii, A. et al. Leisure bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283 (2000).
Virgili, T. et al. Ultrafast polariton rest dynamics in an natural semiconductor microcavity. Phys. Rev. B 83, 245309 (2011).
Kim, Ok. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 1–9 (2019).
Zasedatelev, A. V. et al. A room-temperature natural polariton transistor. Nat. Photonics 13, 378–383 (2019).
Gu, J. et al. Enhanced nonlinear interplay of polaritons by way of excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 1–7 (2021).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with gentle. Sci. Adv. 7, eabf3096 (2021).
Birowska, M., Junior, P. E. F., Fabian, J. & Kunstmann, J. Massive exciton binding energies in MnPS3 as a case research of a van der Waals layered magnet. Phys. Rev. B 103, L121108 (2021).
Lane, C. & Zhu, J.-X. Thickness dependence of digital construction and optical properties of a correlated van der waals antiferromagnetic NiPS3 skinny movie. Phys. Rev. B 102, 075124 (2020).
Jungwirth, T. et al. The a number of instructions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).