Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).
Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nat. Biotechnol. 30, 326–328 (2012).
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. A number of rereads of single proteins at single-amino acid decision utilizing nanopores. Science 374, 1509–1513 (2021).
Manrao, E. A. et al. Studying DNA at single-nucleotide decision with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).
Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins utilizing a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).
Fragasso, A., Schmid, S. & Dekker, C. Evaluating present noise in organic and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).
Li, J. et al. Ion-beam sculpting at nanometre size scales. Nature 412, 166–169 (2001).
Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).
Dekker, C. Strong-state nanopores. Nanoscience and Expertise: A Assortment of Evaluations from Nature Journals 60–66 (2010).
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).
Xue, L. et al. Strong-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).
Yusko, E. C. et al. Actual-time form approximation and fingerprinting of single proteins utilizing a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).
Lu, B., Albertorio, F., Hoogerheide, D. P. & Golovchenko, J. A. Origins and penalties of velocity fluctuations throughout DNA passage by way of a nanopore. Biophys. J. 101, 70–79 (2011).
Plesa, C., Van Bathroom, N., Ketterer, P., Dietz, H. & Dekker, C. Velocity of DNA throughout translocation by way of a solid-state nanopore. Nano Lett. 15, 732–737 (2015).
Rosenstein, J. Ok., Wanunu, M., Service provider, C. A., Drndic, M. & Shepard, Ok. L. Built-in nanopore sensing platform with sub-microsecond temporal decision. Nat. Strategies 9, 487–492 (2012).
Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010).
Bell, N. A. W., Chen, Ok., Ghosal, S., Ricci, M. & Keyser, U. F. Uneven dynamics of DNA getting into and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).
Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C. & Radenovic, A. DNA translocation by way of low-noise glass nanopores. ACS Nano 7, 11255–11262 (2013).
Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).
Yuan, Z., Liu, Y., Dai, M., Yi, X. & Wang, C. Controlling DNA translocation by way of solid-state nanopores. Nanoscale Res. Lett. 15, 80 (2020).
Rahman, M., Sampad, M. J. N., Hawkins, A. & Schmidt, H. Current advances in built-in solid-state nanopore sensors. Lab Chip 21, 3030–3052 (2021).
Hansma, P. Ok., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).
Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of dwelling cells. Biophys. J. 73, 653–658 (1997).
Novak, P. et al. Nanoscale live-cell imaging utilizing hopping probe ion conductance microscopy. Nat. Strategies 6, 279–281 (2009).
Leitao, S. M. et al. Time-resolved scanning ion conductance microscopy for three-dimensional monitoring of nanoscale cell floor dynamics. ACS Nano 15, 17613–17622 (2021).
Navikas, V. et al. Excessive-throughput nanocapillary filling enabled by microwave radiation for scanning ion conductance microscopy imaging. ACS Appl. Nano Mater. 3, 7829–7834 (2020).
Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule pressure spectroscopy on polysaccharides by atomic pressure microscopy. Science 275, 1295–1297 (1997).
Chen, Ok. et al. Dynamics of pushed polymer transport by way of a nanopore. Nat. Phys. 17, 1043–1049 (2021).
Chen, Ok. et al. Digital information storage utilizing DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2018).
Tabatabaei, S. Ok. et al. DNA punch playing cards for storing information on native DNA sequences through enzymatic nicking. Nat. Commun. 11, 1742 (2020).
Clegg, R. M. Fluorescence resonance vitality switch and nucleic acids. Strategies Enzymol. 211, 353–388 (1992).
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Strategies Primers 1, 39 (2021).
Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).
Zhu, C. et al. Imaging with ion channels. Anal. Chem. 93, 5355–5359 (2021).
Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. Ok. Mapping interplay forces with the atomic pressure microscope. Biophys. J. 66, 2159–2165 (1994).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software program for SPM information evaluation. Open Phys. 10, 181–188 (2012).
Wang, H. & Hays, J. B. Easy and speedy preparation of gapped plasmid DNA for incorporation of oligomers containing particular DNA lesions. Mol. Biotechnol. 19, 133–140 (2001).
Jozwiakowski, S. Ok. & Connolly, B. A. Plasmid-based lacZα assay for DNA polymerase constancy: software to archaeal family-B DNA polymerase. Nucleic Acids Res. 37, e102 (2009).
Auburn, R. P. et al. Robotic recognizing of cDNA and oligonucleotide microarrays. Tendencies Biotechnol. 23, 374–379 (2005).
Navikas, V. et al. Correlative 3D microscopy of single cells utilizing super-resolution and scanning ion-conductance microscopy. Nat. Commun. 12, 4565 (2021).