Tuesday, June 20, 2023
HomeNanotechnologySpatially multiplexed single-molecule translocations by way of a nanopore at managed speeds

Spatially multiplexed single-molecule translocations by way of a nanopore at managed speeds


  • Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nat. Biotechnol. 30, 326–328 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. A number of rereads of single proteins at single-amino acid decision utilizing nanopores. Science 374, 1509–1513 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Manrao, E. A. et al. Studying DNA at single-nucleotide decision with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins utilizing a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fragasso, A., Schmid, S. & Dekker, C. Evaluating present noise in organic and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Ion-beam sculpting at nanometre size scales. Nature 412, 166–169 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Dekker, C. Strong-state nanopores. Nanoscience and Expertise: A Assortment of Evaluations from Nature Journals 60–66 (2010).

  • Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Strong-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yusko, E. C. et al. Actual-time form approximation and fingerprinting of single proteins utilizing a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, B., Albertorio, F., Hoogerheide, D. P. & Golovchenko, J. A. Origins and penalties of velocity fluctuations throughout DNA passage by way of a nanopore. Biophys. J. 101, 70–79 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Plesa, C., Van Bathroom, N., Ketterer, P., Dietz, H. & Dekker, C. Velocity of DNA throughout translocation by way of a solid-state nanopore. Nano Lett. 15, 732–737 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rosenstein, J. Ok., Wanunu, M., Service provider, C. A., Drndic, M. & Shepard, Ok. L. Built-in nanopore sensing platform with sub-microsecond temporal decision. Nat. Strategies 9, 487–492 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bell, N. A. W., Chen, Ok., Ghosal, S., Ricci, M. & Keyser, U. F. Uneven dynamics of DNA getting into and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    Article 

    Google Scholar
     

  • Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C. & Radenovic, A. DNA translocation by way of low-noise glass nanopores. ACS Nano 7, 11255–11262 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Z., Liu, Y., Dai, M., Yi, X. & Wang, C. Controlling DNA translocation by way of solid-state nanopores. Nanoscale Res. Lett. 15, 80 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rahman, M., Sampad, M. J. N., Hawkins, A. & Schmidt, H. Current advances in built-in solid-state nanopore sensors. Lab Chip 21, 3030–3052 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hansma, P. Ok., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of dwelling cells. Biophys. J. 73, 653–658 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Novak, P. et al. Nanoscale live-cell imaging utilizing hopping probe ion conductance microscopy. Nat. Strategies 6, 279–281 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Leitao, S. M. et al. Time-resolved scanning ion conductance microscopy for three-dimensional monitoring of nanoscale cell floor dynamics. ACS Nano 15, 17613–17622 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Navikas, V. et al. Excessive-throughput nanocapillary filling enabled by microwave radiation for scanning ion conductance microscopy imaging. ACS Appl. Nano Mater. 3, 7829–7834 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule pressure spectroscopy on polysaccharides by atomic pressure microscopy. Science 275, 1295–1297 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Ok. et al. Dynamics of pushed polymer transport by way of a nanopore. Nat. Phys. 17, 1043–1049 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Ok. et al. Digital information storage utilizing DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2018).

    Article 

    Google Scholar
     

  • Tabatabaei, S. Ok. et al. DNA punch playing cards for storing information on native DNA sequences through enzymatic nicking. Nat. Commun. 11, 1742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clegg, R. M. Fluorescence resonance vitality switch and nucleic acids. Strategies Enzymol. 211, 353–388 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Strategies Primers 1, 39 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, C. et al. Imaging with ion channels. Anal. Chem. 93, 5355–5359 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. Ok. Mapping interplay forces with the atomic pressure microscope. Biophys. J. 66, 2159–2165 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nečas, D. & Klapetek, P. Gwyddion: an open-source software program for SPM information evaluation. Open Phys. 10, 181–188 (2012).

    Article 

    Google Scholar
     

  • Wang, H. & Hays, J. B. Easy and speedy preparation of gapped plasmid DNA for incorporation of oligomers containing particular DNA lesions. Mol. Biotechnol. 19, 133–140 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Jozwiakowski, S. Ok. & Connolly, B. A. Plasmid-based lacZα assay for DNA polymerase constancy: software to archaeal family-B DNA polymerase. Nucleic Acids Res. 37, e102 (2009).

    Article 

    Google Scholar
     

  • Auburn, R. P. et al. Robotic recognizing of cDNA and oligonucleotide microarrays. Tendencies Biotechnol. 23, 374–379 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Navikas, V. et al. Correlative 3D microscopy of single cells utilizing super-resolution and scanning ion-conductance microscopy. Nat. Commun. 12, 4565 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments