Wednesday, February 8, 2023
HomeNanotechnologySemiconductor moiré supplies | Nature Nanotechnology

Semiconductor moiré supplies | Nature Nanotechnology


  • Li, G. et al. Commentary of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, T. et al. Steady Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ghiotto, A. et al. Quantum criticality in twisted transition metallic dichalcogenides. Nature 597, 345–349 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. Ok. & Younger, A. F. Superconductivity and powerful correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: cost switch in transition metallic dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Novoselov, Ok. S. et al. Electrical subject impact in atomically skinny carbon movies. Science 306, 666–669 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Novoselov, Ok. S. et al. Two-dimensional fuel of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental statement of the quantum Corridor impact and Berry’s section in graphene. Nature 438, 201–204 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in barely twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition metallic dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metallic dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Xian, L., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat bands and powerful correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Nano Lett. 19, 4934–4940 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band construction of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Mak, Ok. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically skinny MoS2: a brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Splendiani, A. et al. Rising photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Gustafsson, M. V. et al. Ambipolar Landau ranges and powerful band-selective service interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and different group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Ok. F., Xiao, D. & Shan, J. Gentle–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metallic dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Flat bands in twisted bilayer transition metallic dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jin, C. et al. Commentary of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Tran, Ok. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Seyler, Ok. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kim, Ok. et al. van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau stage crossing. Phys. Rev. B 98, 035425 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metallic dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metallic dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard mannequin, Heisenberg mannequin, and Dzyaloshinskii–Moriya interplay in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metallic dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Quantum section diagram of a moiré-Hubbard mannequin. Phys. Rev. B 102, 201104 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Slagle, Ok. & Fu, L. Cost switch excitations, pair density waves, and superconductivity in moiré supplies. Phys. Rev. B 102, 235423 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H., Sheng, D. N. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electrical detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. Tunable bilayer Hubbard mannequin physics in twisted WSe2. Preprint at https://arxiv.org/abs/2202.02055 (2022).

  • Mak, Ok. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metallic dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, T. et al. Cost-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Saito, Y., Ge, J., Watanabe, Ok., Taniguchi, T. & Younger, A. F. Impartial superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Nature 600, 641–646 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mott, N. F. Steel–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    CAS 
    Article 

    Google Scholar
     

  • Imada, M., Fujimori, A. & Tokura, Y. Steel–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Senthil, T. Concept of a steady Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mishmash, R. V., González, I., Melko, R. G., Motrunich, O. I. & Fisher, M. P. A. Steady Mott transition between a metallic and a quantum spin liquid. Phys. Rev. B 91, 235140 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lee, P. A. Moiré bands in transitional metallic dichalcogenides: steady Mott transition, quantum anomalous Corridor and extra. Journal Membership for Condensed Matter Physics https://doi.org/10.36471/JCCM_September_2021_03 (2021).

  • Balents, L. Spin liquids in annoyed magnets. Nature 464, 199–208 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid section of the triangular lattice Hubbard mannequin: a density matrix renormalization group examine. Phys. Rev. 10, 021042 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yiqing Zhou, D. N., Sheng & Kim, E.-A. Quantum phases of transition metallic dichalcogenide moiré programs. Phys. Rev. Lett. 128, 157602 (2021).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Steel–insulator transition with cost fractionalization. Preprint at https://arxiv.org/abs/2106.14910 (2021).

  • Morales-Durán, N., MacDonald, A. H. & Potasz, P. Steel–insulator transition in transition metallic dichalcogenide heterobilayer moiré superlattices. Phys. Rev. B 103, L241110 (2021).

    Article 

    Google Scholar
     

  • Pan, H. & Das Sarma, S. Interplay-driven filling-induced metal-insulator transitions in 2D moiré lattices. Phys. Rev. Lett. 127, 096802 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wietek, A. et al. Mott insulating states with competing orders within the triangular lattice Hubbard mannequin. Phys. Rev. 11, 041013 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zang, J., Wang, J., Cano, J., Georges, A. & Millis, A. J. Dynamical imply subject idea of moiré bilayer transition metallic dichalcogenides: section diagram, resistivity, and quantum criticality. Phys. Rev. X 12, 021064 (2022).


    Google Scholar
     

  • Ahn, Seongjin & Sarma, S. D. Dysfunction induced two-dimensional metallic–insulator transition in moiré transition metallic dichalcogenide multilayers. Phys. Rev. B 105, 115114 (2021).

    Article 

    Google Scholar
     

  • Huang, Y., Skinner, B. & Shklovskii, B. I. Conductivity of two-dimensional small hole semiconductors and topological insulators in robust Coulomb dysfunction. Preprint at https://arxiv.org/abs/2201.11652 (2022).

  • Zhang, Y., Liu, T. & Fu, L. Digital buildings, cost switch, and cost order in twisted transition metallic dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Padhi, B., Chitra, R. & Phillips, P. W. Generalized Wigner crystallization in moiré supplies. Phys. Rev. B 103, 125146 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated digital phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Emery, V. J., Kivelson, S. A. & Tranquada, J. M. Stripe phases in high-temperature superconductors. Proc. Natl Acad. Sci. USA 96, 8814 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Cost density wave in two-dimensional electron liquid in weak magnetic subject. Phys. Rev. Lett. 76, 499–502 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Kivelson, S. A., Fradkin, E. & Emery, V. J. Digital liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Matty, M. & Kim, E.-A. Melting of generalized Wigner crystals in transition metallic dichalcogenide heterobilayer Moiré programs. Preprint at https://arxiv.org/abs/2112.08624 (2021).

  • Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Camjayi, A., Haule, Ok., Dobrosavljević, V. & Kotliar, G. Coulomb correlations and the Wigner–Mott transition. Nat. Phys. 4, 932–935 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Musser, S., Senthil, T & Chowdhury, D. Concept of a steady bandwidth-tuned Wigner–Mott transition. Preprint at https://arxiv.org/abs/2111.09894 (2021).

  • Wigner, E. On the interplay of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Dielectric disaster on the Mott and Wigner transitions in a moiré superlattice. Preprint at https://arxiv.org/abs/2201.12510 (2022).

  • Kane, C. L. & Mele, E. J. Quantum spin corridor impact in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Hohenadler, M. & Assaad, F. F. Correlation results in two-dimensional topological insulators. J. Phys. Condens. Matter 25, 143201 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena within the robust spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Pan, H., Xie, M., Wu, F. & Sarma, S. D. Topological phases in AB-stacked MoTe2/WSe2: 2 topological insulators, Chern insulators, and topological cost density waves. Preprint at https://arxiv.org/abs/2111.01152 (2021).

  • Regnault, N. & Bernevig, B. A. Fractional chern insulator. Phys. Rev. 1, 021014 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Corridor impact in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sharpe Aaron, L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Ezawa, M., Tanaka, Y. & Nagaosa, N. Topological section transition with out hole closing. Sci. Rep. 3, 2790 (2013).

    Article 

    Google Scholar
     

  • Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, Ok. F. & Regulation, Ok. Valley polarized quantum anomalous Corridor state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2021).

    Article 

    Google Scholar
     

  • Chang, Y.-W. & Chang, Y.-C. Concept of quantum anomalous Corridor impact and electric-field-induced section transition in AB-stacked MoTe2/WSe2 moire heterobilayers. Preprint at https://arxiv.org/abs/2203.10088 (2022).

  • Rademaker, L. Spin–orbit coupling in transition metallic dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article 

    Google Scholar
     

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Shimazaki, Y. et al. Optical signatures of periodic cost distribution in a Mott-like correlated insulator state. Phys. Rev. 11, 021027 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Huang, D., Choi, J., Shih, C.-Ok. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 16, 1208–1213 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Brotons-Gisbert, M. et al. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. 11, 031033 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Marcellina, E. et al. Proof for moiré trions in twisted MoSe2 homobilayers. Nano Lett. 21, 4461–4468 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zuocheng, Z. et al. Correlated interlayer exciton insulator in double layers of monolayer WSe2 and moiré WS2/WSe2. Preprint at https://arxiv.org/abs/2108.07131 (2021).

  • Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Dutta, O. et al. Non-standard Hubbard fashions in optical lattices: a overview. Rep. Prog. Phys. 78, 066001 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xie, M. & MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 121, 067702 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zeng, Y. & MacDonald, A. H. Electrically managed two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron programs. Nature 432, 691–694 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H. Doping a Mott insulator with excitons in moiré bilayer: fractional superfluid, impartial Fermi floor and Mott transition. Preprint at https://arxiv.org/abs/2204.10937 (2022).

  • Angeli, M. & MacDonald Allan, H. Γ valley transition metallic dichalcogenide moiré bands. Proc. Natl Acad. Sci. USA 118, e2021826118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kumar, A., Hu, N. C., MacDonald, A. H. & Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Preprint at https://arxiv.org/abs/2110.11962 (2021).

  • Dalal, A. & Ruhman, J. Orbitally selective Mott section in electron-doped twisted transition metal-dichalcogenides: a attainable realization of the Kondo lattice mannequin. Phys. Rev. Res. 3, 043173 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H. & Vishwanath, A. Electrical detection of spin liquids in double moiré layers. Preprint at https://arxiv.org/abs/2005.12925 (2020).

  • Xia, F., Wang, H., Hwang, J. C. M., Neto, A. H. C. & Yang, L. Black phosphorus and its isoelectronic supplies. Nat. Rev. Phys. 1, 306–317 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor supplies. npj 2D Mater. Appl. 4, 29 (2020).

    CAS 
    Article 

    Google Scholar
     

  • McGuire, M. A. Crystal and magnetic buildings in layered, transition metallic dihalides and trihalides. Crystals 7, 121 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Ok. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar
     

  • Hejazi, Ok., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions within the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking area wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Xie, H. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 18, 30–36 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Track, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Edelberg, D. et al. Approaching the intrinsic restrict in transition metallic diselenides through level defect management. Nano Lett. 19, 4371–4379 (2019).

    CAS 
    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments