Ginsburg O. Manifesto for international ladies’s well being. Nat Rev Clin Oncol. 2018;15:3–4.
Hesam AA, Taghipour L, Rasekhi S, Fallahi S, Hesam Z. Investigating the a number of points of psychological well being in infertile ladies. Int J Ment Well being Addict. 2017;15:928–32.
Ramírez-González JA, Vaamonde-Lemos R, Cunha-Filho JS, Varghese AC, Swanson RJ. Overview of the feminine reproductive system. In: Vaamonde D, Du Plessis SS, Agarwal A, editors. Train and human replica: induced fertility issues and attainable therapies. New York: Springer; 2016. p. 19–46.
Farquhar CM, Bhattacharya S, Repping S, Mastenbroek S, Kamath MS, Marjoribanks J, Boivin J. Feminine subfertility. Nat Rev Dis Primers. 2019;5:7.
Nicoloro-SantaBarbara JM, Lobel M, Bocca S, Stelling JR, Pastore LM. Psychological and emotional concomitants of infertility prognosis in ladies with diminished ovarian reserve or anatomical explanation for infertility. Fertil Steril. 2017;108:161–7.
La Rosa VL, Shah M, Kahramanoglu I, Cerentini TM, Ciebiera M, Lin L-T, Dirnfeld M, Minona P, Tesarik J. High quality of life and fertility preservation counseling for girls with gynecological most cancers: an built-in psychological and medical perspective. J Psychosom Obst Gyn. 2020;41:86–92.
Kuan KKW, Saunders PTK. Feminine reproductive programs: Hormone dependence and receptor expression. In: Campbell MJ, Bevan CL, editors. Nuclear receptors in human well being and illness. Cham: Springer Worldwide Publishing; 2022. p. 21–39.
Chen J, Fang Y, Xu Y, Solar H. Function of m6A modification in feminine infertility and reproductive system ailments. Int J Biol Sci. 2022;18:3592–604.
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased feminine reproductive system. Acta Biomater. 2021;132:288–312.
Kim S, Kim S-W, Han S-J, Lee S, Park H-T, Track J-Y, Kim T. Molecular mechanism and prevention technique of chemotherapy- and radiotherapy-induced ovarian injury. Int J Mol Sci. 2021;22:7484.
Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5:686–705.
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM advances for early antral follicle-enclosed oocytes coupling reproductive tissue engineering to inductive influences of human chorionic gonadotropin and ovarian floor epithelium coculture. Int J Mol Sci. 2023;24:6626.
Frances-Herrero E, Lopez R, Hellstrom M, de Miguel-Gomez L, Herraiz S, Brannstrom M, Pellicer A, Cervello I. Bioengineering tendencies in feminine replica: a scientific overview. Hum Reprod Replace. 2022;28:798–837.
Heidari-Khoei H, Esfandiari F, Hajari MA, Ghorbaninejad Z, Piryaei A, Baharvand H. Organoid expertise in feminine reproductive biomedicine. Reprod Biol Endocrinol. 2020;18:64.
Shafiee A, Atala A. Tissue engineering: towards a brand new period of medication. Annu Rev Med. 2017;68:29–40.
Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK, Anand Okay, Gupta G, Jha NK, Gupta PK, et al. Microfluidic chips: current advances, essential methods in design, functions and future views. Microfluid Nanofluidics. 2021;25:99.
Seiler ST, Mantalas GL, Selberg J, Cordero S, Torres-Montoya S, Baudin PV, Ly VT, Amend F, Tran L, Hoffman RN, et al. Modular automated microfluidic cell tradition platform reduces glycolytic stress in cerebral cortex organoids. Sci Rep. 2022;12:20173.
Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for all times sciences. J Nanobiotechnology. 2023;21:85.
Na JT, Hu SY, Xue CD, Wang YX, Chen KJ, Li YJ, Wang Y, Qin KR. A microfluidic system for exactly reproducing physiological blood strain and wall shear stress to endothelial cells. Analyst. 2021;146:5913–22.
Jagannath A, Cong H, Hassan J, Gonzalez G, Gilchrist MD, Zhang N. Pathogen detection on microfluidic platforms: current advances, challenges, and prospects. Biosens Bioelectron: X. 2022;10: 100134.
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Latest developments in microfluidic chip biosensor detection of foodborne pathogenic micro organism: a overview. Anal Bioanal Chem. 2022;414:2883–902.
Murphy AR, Campo H, Kim JJ. Methods for modelling endometrial ailments. Nat Rev Endocrinol. 2022;18:727–43.
Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in-vitro fertilization applied sciences: reworking the way forward for human replica. Traits Analyt Chem. 2023;160: 116959.
Leung ETY, Lee CL, Tian X, Lam KKW, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Simulating nature in sperm choice for assisted replica. Nat Rev Urol. 2022;19:16–36.
Bodke VV, Burdette JE. Developments in microfluidic programs for the examine of feminine reproductive biology. Endocrinology. 2021;162:bqab078.
Nikshad A, Aghlmandi A, Safaralizadeh R, Aghebati-Maleki L, Warkiani ME, Khiavi FM, Yousefi M. Advances of microfluidic expertise in reproductive biology. Life Sci. 2021;265: 118767.
Mancini V, Pensabene V. Organs-on-chip fashions of the feminine reproductive system. Bioengineering. 2019;6:103.
Younger RE, Huh DD. Organ-on-a-chip expertise for the examine of the feminine reproductive system. Adv Drug Deliv Rev. 2021;173:461–78.
Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate particular tissues and organs. Genes. 2010;1:413–26.
Clark CP, Woolf MS, Karstens SL, Lewis HM, Nauman AQ, Landers JP. Closable valves and channels for polymeric microfluidic gadgets. Micromachines. 2020;11:627.
Shin Y, Jeon I, You Y, Track G, Lee TK, Oh J, Son C, Baek D, Kim D, Cho H, et al. Facile microfluidic fabrication of 3D hydrogel SERS substrate with excessive reusability and reproducibility by way of programmable maskless move microlithography. Adv Choose Mater. 2020;8:2001586.
Whitesides GM. The origins and the way forward for microfluidics. Nature. 2006;442:368–73.
Ren Okay, Zhou J, Wu H. Supplies for microfluidic chip fabrication. Acc Chem Res. 2013;46:2396–406.
Hou X, Zhang YS, Santiago GT, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A. Interaction between supplies and microfluidics. Nat Rev Mater. 2017;2:1.
Solar Z, Wen J, Wang W, Fan H, Chen Y, Yan J, Xiang J. Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with elevated floor vitality and re-coatability. Prog Org Coat. 2020;146: 105744.
Workers RH, Landfester Okay, Crespy D. Latest advances within the emulsion solvent evaporation approach for the preparation of nanoparticles and nanocapsules. In: Percec V, editor. Hierarchical macromolecular buildings: 60 years after the Staudinger nobel prize II. Cham: Springer; 2013. p. 329–44.
Ren Okay, Chen Y, Wu H. New supplies for microfluidics in biology. Curr Opin Biotechnol. 2014;25:78–85.
Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Fast prototyping of microfluidic programs in Poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.
Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer smooth lithography. Science. 2000;288:113–6.
Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Mushy lithography in biology and biochemistry. Ann Rev of Biomed Eng. 2001;3:335–73.
Sonmez UM, Coyle S, Taylor RE, LeDuc PR. Polycarbonate warmth molding for smooth lithography. Small. 2020;16: e2000241.
Owens CE, Hart AJ. Excessive-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip. 2018;18:890–901.
Kim Y, Track J, Lee Y, Cho S, Kim S, Lee SR, Park S, Shin Y, Jeon NL. Excessive-throughput injection molded microfluidic system for single-cell evaluation of spatiotemporal dynamics. Lab Chip. 2021;21:3150–8.
Lee UN, Su X, Guckenberger DJ, Dostie AM, Zhang T, Berthier E, Theberge AB. Fundamentals of fast injection molding for microfluidic cell-based assays. Lab Chip. 2018;18:496–504.
Ho CM, Ng SH, Li KH, Yoon YJ. 3D printed microfluidics for organic functions. Lab Chip. 2015;15:3627–37.
He Y, Wu Y, Fu JZ, Gao Q, Qiu JJ. Developments of 3D printing microfluidics and functions in chemistry and biology: a overview. Electroanalysis. 2016;28:1658–78.
Gonzalez G, Roppolo I, Pirri CF, Chiappone A. Present and rising tendencies in polymeric 3D printed microfluidic gadgets. Addit Manuf. 2022;55: 102867.
Yi HG, Lee H, Cho DW. 3D printing of organs-on-chips. Bioengineering. 2017;4:10.
Su R, Wen J, Su Q, Wiederoder MS, Koester SJ, Uzarski JR, McAlpine MC. 3D printed self-supporting elastomeric buildings for multifunctional microfluidics. Sci Adv. 2020;6:eabc9846.
Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H. Direct, one-step molding of 3D-printed buildings for handy fabrication of actually 3D PDMS microfluidic chips. Microfluid Nanofluid. 2015;19:9–18.
Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Viglione MS, Woolley AT, Van Ry PM, Christensen KA, Nordin GP. Spatially and optically tailor-made 3D printing for extremely miniaturized and built-in microfluidics. Nat Commun. 2021;12:5509.
Regehly M, Garmshausen Y, Reuter M, Konig NF, Israel E, Kelly DP, Chou CY, Koch Okay, Asfari B, Hecht S. Xolography for linear volumetric 3D printing. Nature. 2020;588:620–4.
Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP. Steady perfusion microfluidic cell tradition array for high-throughput cell-based assays. Biotechnol Bioeng. 2005;89:1–8.
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung capabilities on a chip. Science. 2010;328:1662–8.
Kovach KM, LaBarbera MA, Moyer MC, Cmolik BL, van Lunteren E, Sen Gupta A, Capadona JR, Potkay JA. In vitro analysis and in vivo demonstration of a biomimetic, hemocompatible, microfluidic synthetic lung. Lab Chip. 2015;15:1366–75.
Doryab A, Amoabediny G, Salehi-Najafabadi A. Advances in pulmonary remedy and drug improvement: lung tissue engineering to lung-on-a-chip. Biotechnol Adv. 2016;34:588–96.
Nelson CM, Gleghorn JP, Pang MF, Jaslove JM, Goodwin Okay, Varner VD, Miller E, Radisky DC, Stone HA. Microfluidic chest cavities reveal that transmural strain controls the speed of lung improvement. Improvement. 2017;144:4328–35.
Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi Okay, Horiuchi S, et al. A human-airway-on-a-chip for the fast identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815–29.
Kumar V, Madhurakkat Perikamana SK, Tata A, Hoque J, Gilpin A, Tata PR, Varghese S. An In vitro microfluidic alveolus mannequin to review lung biomechanics. Entrance Bioeng Biotechnol. 2022;10: 848699.
Sisodia Y, Shah Okay, Ali Sayyed A, Jain M, Ali SA, Gondaliya P, Kalia Okay, Tekade RK. Lung-on-chip microdevices to foster pulmonary drug discovery. Biomater Sci. 2023;11:777–90.
Sznitman J. Revisiting airflow and aerosol transport phenomena within the deep lungs with microfluidics. Chem Rev. 2022;122:7182–204.
Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity evaluation. Integr Biol. 2013;5:1119–29.
Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-chip expertise for drug-induced nephrotoxicity screening. Traits Biotechnol. 2016;34:156–70.
Qu Y, An F, Luo Y, Lu Y, Liu T, Zhao W, Lin B. A nephron mannequin for examine of drug-induced acute kidney harm and evaluation of drug-induced nephrotoxicity. Biomaterials. 2018;155:41–53.
Choudhury MI, Li Y, Mistriotis P, Vasconcelos ACN, Dixon EE, Yang J, Benson M, Maity D, Walker R, Martin L, et al. Kidney epithelial cells are lively mechano-biological fluid pumps. Nat Commun. 2022;13:2317.
Gijzen L, Yousef Yengej FA, Schutgens F, Vormann MK, Ammerlaan CME, Nicolas A, Kurek D, Vulto P, Rookmaaker MB, Lanz HL, et al. Tradition and evaluation of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc. 2021;16:2023–50.
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and move. Lab Chip. 2012;12:2165–74.
Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore J, et al. Membrane-free tradition and real-time barrier integrity evaluation of perfused intestinal epithelium tubes. Nat Commun. 2017;8:262.
Shin W, Kim HJ. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell tradition insert. Nat Protoc. 2022;17:910–39.
Zhao C, Yu Y, Zhang X, Wu X, Ren J, Zhao Y. Biomimetic intestinal barrier based mostly on microfluidic encapsulated sucralfate microcapsules. Sci Bull. 2019;64:1418–25.
Kim HJ, Ingber DE. Intestine-on-a-Chip microenvironment induces human intestinal cells to bear villus differentiation. Integr Biol. 2013;5:1130–40.
De Gregorio V, Telesco M, Corrado B, Rosiello V, Urciuolo F, Netti PA, Imparato G. Gut-liver axis on-chip reveals the intestinal protecting function on hepatic injury by emulating ethanol first-pass metabolism. Entrance Bioeng Biotechnol. 2020;8:163.
Vega JMH, Hong HJ, Loutherback Okay, Stybayeva G, Revzin A. A microfluidic system for long-term upkeep of organotypic liver cultures. Adv Mater Technol. 2023;8:2201121.
Meng Q, Wang Y, Li Y, Shen C. Hydrogel microfluidic-based liver-on-a-chip: mimicking the mass switch and structural options of liver. Biotechnol Bioeng. 2021;118:612–21.
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for illness modeling and regenerative medication. Adv Funct Mater. 2020;30:1909553.
Ortega-Prieto AM, Skelton JK, Wai SN, Massive E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck RA, Thursz M, Catanese MT, Dorner M. 3D microfluidic liver cultures as a physiological preclinical software for hepatitis B virus an infection. Nat Commun. 2018;9:682.
Xu X, Wang X, Liao YP, Luo L, Xia T, Nel AE. Use of a liver-targeting immune-tolerogenic mRNA lipid nanoparticle platform to deal with peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence supply. ACS Nano. 2023;17:4942–57.
Singh N, Ali MA, Rai P, Sharma A, Malhotra BD, John R. Microporous nanocomposite enabled microfluidic biochip for cardiac biomarker detection. ACS Appl Mater Interfaces. 2017;9:33576–88.
Jahn P, Karger RK, Soso Khalaf S, Hamad S, Peinkofer G, Sahito RGA, Pieroth S, Nitsche F, Lu J, Derichsweiler D, et al. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels. Biofabrication. 2022;14: 035017.
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-free isolation and single cell biophysical phenotyping evaluation of main cardiomyocytes utilizing inertial microfluidics. Small. 2021;17: e2006176.
Michas C, Karakan MÇ, Nautiyal P, Seidman JG, Seidman CE, Agarwal A, Ekinci Okay, Eyckmans J, White AE, Chen CS. Engineering a residing cardiac pump on a chip utilizing high-precision fabrication. Sci Adv. 2022;8:eabm3791.
Butcher JT, Murfee WL, Stapleton PA. Rising subjects in microvascular analysis: advancing our understanding by interdisciplinary exploration. Microcirculation. 2019;26: e12558.
Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Solar Y, Shen J, Ramezani H, Fu Z, Liu Z, et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small. 2018;14: e1802368.
Cybulski O, Garstecki P, Grzybowski BA. Oscillating droplet trains in microfluidic networks and their suppression in blood move. Nat Phy. 2019;15:706–13.
Lim J, Choi G, Joo KI, Cha HJ, Kim J. Embolization of vascular malformations by way of in situ photocrosslinking of mechanically bolstered alginate microfibers utilizing an optical-fiber-integrated microfluidic system. Adv Mater. 2021;33: e2006759.
Myers DR, Lam WA. Vascularized microfluidics and their untapped potential for discovery in ailments of the microvasculature. Annu Rev Biomed Eng. 2021;23:407–32.
Grebenyuk S, Abdel Fattah AR, Kumar M, Toprakhisar B, Rustandi G, Vananroye A, Salmon I, Verfaillie C, Grillo M, Ranga A. Massive-scale perfused tissues by way of artificial 3D smooth microfluidics. Nat Commun. 2023;14:193.
Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Pores and skin ailments modeling utilizing mixed tissue engineering and microfluidic applied sciences. Adv Healthc Mater. 2016;5:2459–80.
Pupovac A, Senturk B, Griffoni C, Maniura-Weber Okay, Rottmar M, McArthur SL. Towards immunocompetent 3D pores and skin fashions. Adv Healthc Mater. 2018;7: e1701405.
Liu JD, Du XY, Chen S. A section inversion-based microfluidic fabrication of helical microfibers in direction of versatile synthetic stomach pores and skin. Angew Chem Int Ed Engl. 2021;60:25089–96.
Kim J, Wu Y, Luan H, Yang DS, Cho D, Kwak SS, Liu S, Ryu H, Ghaffari R, Rogers JA. A skin-interfaced, miniaturized microfluidic evaluation and supply system for colorimetric measurements of vitamins in sweat and provide of nutritional vitamins by way of the pores and skin. Adv Sci. 2022;9: e2103331.
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-chip programs: microengineering to biomimic residing programs. Small. 2016;12:2253–82.
Dow Okay. Trying into the take a look at tube: the beginning of IVF on british tv. Med Hist. 2019;63:189–208.
Wang FN. Actual-time sperm separation system: a overview of Wang tubes and associated applied sciences. Arch Androl. 1995;34:13–32.
Lih CH, Obasaju M, McCaffrey C, Gordon JW. Improvement of a microchamber which spontaneously selects high-quality sperm to be used in in vitro fertilization or micromanipulation. J Help Reprod Genet. 1996;13:657–62.
Lan F, Demaree B, Ahmed N, Abate AR. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol. 2017;35:640–6.
Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle improvement and transgenic mouse fashions. Hum Reprod Replace. 2006;12:537–55.
Monniaux D, Clement F, Dalbies-Tran R, Estienne A, Fabre S, Mansanet C, Monget P. The ovarian reserve of primordial follicles and the dynamic reserve of antral rising follicles: what’s the hyperlink? Biol Reprod. 2014;90:85.
Yoon H-J, Lee YJ, Baek S, Chung YS, Kim D-H, Lee JH, Shin YC, Shin YM, Ryu C, Kim H-S, et al. Hormone autocrination by vascularized hydrogel supply of ovary spheroids to rescue ovarian dysfunctions. Sci Adv. 2021;7:eabe8873.
Leeners B, Geary N, Tobler PN, Asarian L. Ovarian hormones and weight problems. Hum Reprod Replace. 2017;23:300–21.
Bosetti C, Scotti L, Negri E, Talamini R, Levi F, Franceschi S, Montella M, Giacosa A, La Vecchia C. Benign ovarian cysts and breast most cancers danger. Int J Most cancers. 2006;119:1679–82.
Abdelhameed AM, Khater NH, Ahmed SA. Survey of females at college age group between 10–15 years previous to review the prevalence of ovarian cysts amongst them utilizing pelvic ultrasound. QJM Intern J Med. 2020;113:hcaa068-hcaa11.
Bou-Tayeh B, Miller ML. Ovarian tumors orchestrate distinct mobile compositions. Immunity. 2021;54:1107–9.
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, et al. Biomaterials and superior applied sciences for the analysis and therapy of ovarian ageing. J Nanobiotechnology. 2022;20:374.
Schwab FD, Scheidmann MC, Ozimski LL, Kling A, Armbrecht L, Ryser T, Krol I, Strittmatter Okay, Nguyen-Strauli BD, Jacob F, et al. MyCTC chip: microfluidic-based drug display with patient-derived tumour cells from liquid biopsies. Microsyst Nanoeng. 2022;8:130.
Yang Q, Zhu L, Jin L. Human follicle in vitro tradition together with activation, progress, and maturation: a overview of analysis progress. Entrance Endocrinol. 2020;11:548.
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A overview on biomaterials for ovarian tissue engineering. Acta Biomater. 2021;135:48–63.
Inexperienced LJ, Shikanov A. In vitro tradition strategies of preantral follicles. Theriogenology. 2016;86:229–38.
Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle progress: overview of tradition fashions, biomaterials, design parameters and future instructions. Reprod Biol Endocrinol. 2010;8:119.
Eppig JJ, Schroeder AC. Capability of mouse oocytes from preantral follicles to bear embryogenesis and improvement to stay younger after progress, maturation, and fertilization in vitro1. Biol Reprod. 1989;41:268–76.
Eppig JJ, O’Brien MJ. Improvement in vitro of mouse oocytes from primordial follicles1. Biol Reprod. 1996;54:197–207.
Pais AS, Reis S, Laranjo M, Caramelo F, Silva F, Botelho MF, Almeida-Santos T. The problem of ovarian tissue tradition: 2D versus 3D tradition. J Ovarian Res. 2021;14:147.
Antel M, Inaba M. Modulation of cell-cell interactions in drosophila oocyte improvement. Cells. 2020;9:274.
Suenaga H, Kagaya N, Kawada M, Tatsuda D, Sato T, Shin-ya Okay. Phenotypic screening system utilizing three-dimensional (3D) tradition fashions for pure product screening. J Antibiot. 2021;74:660–6.
Shen C, Zhang G, Meng Q. Analysis of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem Eng J. 2010;49:308–16.
Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created utilizing 3D printed microporous scaffolds restores ovarian perform in sterilized mice. Nat Commun. 2017;8:15261.
Joo S, Oh SH, Sittadjody S, Opara EC, Jackson JD, Lee SJ, Yoo JJ, Atala A. The impact of collagen hydrogel on 3D tradition of ovarian follicles. Biomed Mater. 2016;11: 065009.
Sart S, Ronteix G, Jain S, Amselem G, Baroud CN. Cell tradition in microfluidic droplets. Chem Rev. 2022;122:7061–96.
Younger EW, Beebe DJ. Fundamentals of microfluidic cell tradition in managed microenvironments. Chem Soc Rev. 2010;39:1036–48.
He X. Microfluidic encapsulation of ovarian follicles for 3D tradition. Ann Biomed Eng. 2017;45:1676–84.
Choi JK, Agarwal P, Huang H, Zhao S, He X. The essential function of mechanical heterogeneity in regulating follicle improvement and ovulation with engineered ovarian microtissue. Biomaterials. 2014;35:5122–8.
Frey L, Bandaru P, Zhang YS, O’Kelly Okay, Khademhosseini A, Shin SR. A Twin-layered microfluidic system for long-term managed in situ supply of a number of anti-inflammatory elements for persistent neural functions. Adv Funct Mater. 2018;28:1702009.
Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, et al. A microfluidic tradition mannequin of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8:14584.
Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic system for culturing an encapsulated ovarian follicle. Micromachines. 2017;8:335.
Healy MW, Dolitsky SN, Villancio-Wolter M, Raghavan M, Tillman AR, Morgan NY, DeCherney AH, Park S, Wolff EF. Creating a synthetic three-d ovarian follicle tradition system utilizing a microfluidic system. Micromachines. 2021;12:261.
Sirait B, Wiweko B, Jusuf AA, Iftitah D, Muharam R. Oocyte competence biomarkers related to oocyte maturation: a overview. Entrance Cell Dev Biol. 2021;9: 710292.
Huarte J, Stutz A, O’Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli J-D. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–30.
Pepling ME. Nursing the oocyte. Science. 2016;352:35–6.
Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, et al. Characterization of metabolic patterns in mouse oocytes throughout meiotic maturation. Mol Cell. 2020;80(525–540): e529.
Guo Y, Cai L, Liu X, Ma L, Zhang H, Wang B, Qi Y, Liu J, Diao F, Sha J, Guo X. Single-cell quantitative proteomic evaluation of human oocyte maturation revealed excessive heterogeneity in in Vitro-matured oocytes. Mol Cell Proteomics. 2022;21: 100267.
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol Cell Proteomics. 2016;15:2616–27.
Ernst EH, Grondahl ML, Grund S, Hardy Okay, Heuck A, Sunde L, Franks S, Andersen CY, Villesen P, Lykke-Hartmann Okay. Dormancy and activation of human oocytes from primordial and first follicles: molecular clues to oocyte regulation. Hum Reprod. 2017;32:1684–700.
Liu XS, Liu XJ. Oocyte isolation and enucleation. In: Liu XJ, editor. Xenopus protocols: cell biology and sign transduction. Totowa: Humana Press; 2006. p. 31–41.
Yanez LZ, Camarillo DB. Microfluidic evaluation of oocyte and embryo biomechanical properties to enhance outcomes in assisted reproductive applied sciences. Mol Hum Reprod. 2017;23:235–47.
Turathum B, Gao EM, Chian RC. The perform of cumulus cells in oocyte progress and maturation and in subsequent ovulation and fertilization. Cells. 2021;10:2292.
Guo N, Yang F, Liu Q, Ren X, Zhao H, Li Y, Ai J. Results of cumulus cell elimination time throughout in vitro fertilization on embryo high quality and being pregnant outcomes: a potential randomized sibling-oocyte examine. Reprod Biol Endocrinol. 2016;14:18.
Ashibe S, Irisawa Okay, Yokawa Okay, Nagao Y. Mechanism of the adversarial impact of hyaluronidase used for oocyte denudation on early improvement of bovine embryos. Zygote. 2021;29:337–41.
Zeringue HC, Rutledge JJ, Beebe DJ. Early mammalian embryo improvement depends upon cumulus elimination approach. Lab Chip. 2005;5:86–90.
Zeringue HC, Beebe DJ. Microfluidic elimination of cumulus cells from Mammalian zygotes. In: Schatten H, editor. Germ cell protocols: molecular embryo evaluation, stay imaging, transgenesis, and cloning, vol. 2. Totowa: Humana Press; 2004. p. 365–73.
Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive remedy. Lab Chip. 2018;18:3892–902.
Chen Z, Memon Okay, Cao Y, Zhao G. A microfluidic method for synchronous and nondestructive examine of the permeability of a number of oocytes. Microsyst Nanoeng. 2020;6:55.
Nakahara Okay, Sakuma S, Hayakawa T, Arai F. On-Chip transportation and measurement of mechanical traits of oocytes in an open atmosphere. Micromachines. 2015;6:648–59.
Iwasaki W, Yamanaka Okay, Sugiyama D, Teshima Y, Briones-Nagata MP, Maeki M, Yamashita Okay, Takahashi M, Miyazaki M. Easy separation of excellent high quality bovine oocytes utilizing a microfluidic system. Sci Rep. 2018;8:14273.
Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, Mitchelson Okay, Wang J, Huang G, Qiao J, Cheng J. Integration of single oocyte trapping, in vitro fertilization and embryo tradition in a microwell-structured microfluidic system. Lab Chip. 2010;10:2848–54.
Choi W, Kim JS, Lee DH, Lee KK, Koo DB, Park JK. Dielectrophoretic oocyte choice chip for in vitro fertilization. Biomed Microdevices. 2008;10:337–45.
Hosseini SM, Asgari V, Ostadhosseini S, Hajian M, Ghanaei HR, Nasr-Esfahani MH. Developmental competence of ovine oocytes after vitrification: differential results of vitrification steps, embryo manufacturing strategies, and parental origin of pronuclei. Theriogenology. 2015;83:366–76.
Clark NA, Swain JE. Oocyte cryopreservation: looking for novel enchancment methods. J Help Reprod Genet. 2013;30:865–75.
Chen Z, Zhang Z, Guo X, Memon Okay, Panhwar F, Wang M, Cao Y, Zhao G. Sensing cell membrane biophysical properties for detection of top quality human oocytes. ACS Sens. 2019;4:192–9.
Zhao G, Zhang Z, Zhang Y, Chen Z, Niu D, Cao Y, He X. A microfluidic perfusion method for on-chip characterization of the transport properties of human oocytes. Lab Chip. 2017;17:1297–305.
Lei Z, Xie D, Mbogba MK, Chen Z, Tian C, Xu L, Zhao G. A microfluidic platform with cell-scale exact temperature management for simultaneous investigation of the osmotic responses of a number of oocytes. Lab Chip. 2019;19:1929–40.
Takeuchi T, Palermo GD. Implications of cloning approach for reproductive medication. Reprod BioMed Onl. 2004;8:509–15.
Hagiwara M, Kawahara T, Yamanishi Y, Masuda T, Feng L, Arai F. On-chip magnetically actuated robotic with ultrasonic vibration for single cell manipulations. Lab Chip. 2011;11:2049–54.
Hagiwara M, Kawahara T, Yamanishi Y, Arai F. Driving methodology of microtool by horizontally organized everlasting magnets for single cell manipulation. Appl Phy Lett. 2010;97: 013701.
Inomata N, Mizunuma T, Yamanishi Y, Arai F. Omnidirectional actuation of magnetically pushed microtool for chopping of oocyte in a chip. J Microelectromech Syst. 2011;20:383–8.
Hagiwara M, Kawahara T, Yamanishi Y, Arai F. Exact management of magnetically pushed microtools for enucleation of oocytes in a microfluidic chip. Adv Rob. 2012;25:991–1005.
Ichikawa A, Sakuma S, Sugita M, Shoda T, Tamakoshi T, Akagi S, Arai F. On-chip enucleation of an oocyte by untethered microrobots. J Micromech Microeng. 2014;24: 095004.
Feng L, Hagiwara M, Ichikawa A, Arai F. On-Chip Enucleation of Bovine oocytes utilizing microrobot-assisted flow-speed management. Micromachines. 2013;4:272–85.
Feng L, Solar Y, Ohsumi C, Arai F. Correct shelling out system for single oocytes utilizing air ejection. Biomicrofluidics. 2013;7:54113.
Feng L, Zhou Q, Track B, Feng Y, Cai J, Jiang Y, Zhang D. Cell injection millirobot improvement and analysis in microfluidic chip. Micromachines. 2018;9:590.
Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based mostly on a vibration-induced native whirling move. Microsyst Nanoeng. 2015;1:1.
Feng L, Track B, Chen Y, Liang S, Dai Y, Zhou Q, Chen D, Bai X, Feng Y, Jiang Y, et al. On-chip rotational manipulation of microbeads and oocytes utilizing acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics. 2019;13: 064103.
Del Valle JS, Mancini V, Laverde Garay M, Asseler JD, Fan X, Metzemaekers J, Louwe LA, Pilgram GSK, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Dynamic in vitro tradition of cryopreserved-thawed human ovarian cortical tissue utilizing a microfluidics platform doesn’t enhance early folliculogenesis. Entrance Endocrinol. 2022;13: 936765.
Moussa M, Shu J, Zhang X, Zeng F. Cryopreservation of mammalian oocytes and embryos: present issues and future views. Sci China Life Sci. 2014;57:903–14.
Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, Toner M. Managed loading of cryoprotectants (CPAs) to oocyte with linear and sophisticated CPA profiles on a microfluidic platform. Lab Chip. 2011;11:3530–7.
Mata C, Longmire EK, McKenna DH, Glass KK, Hubel A. Experimental examine of diffusion-based extraction from a cell suspension. Microfluid Nanofluid. 2008;5:529–40.
Pegg DE. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology. 2020;93:3–11.
Vajta G, Nagy ZP. Are programmable freezers nonetheless wanted within the embryo laboratory? Evaluate on vitrification. Reprod BioMed Onl. 2006;12:779–96.
Park S, Wijethunga PA, Moon H, Han B. On-chip characterization of cryoprotective agent mixtures utilizing an EWOD-based digital microfluidic system. Lab Chip. 2011;11:2212–21.
Pyne DG, Liu J, Abdelgawad M, Solar Y. Digital microfluidic processing of mammalian embryos for vitrification. PLoS ONE. 2014;9: e108128.
Tirgar P, Sarmadi F, Najafi M, Kazemi P, AzizMohseni S, Fayazi S, Zandi G, Ziaie N, Shoushtari Zadeh Naseri A, Ehrlicher A, Dashtizad M. Towards embryo cryopreservation-on-a-chip: a standalone microfluidic platform for gradual loading of cryoprotectants to attenuate cryoinjuries. Biomicrofluidics. 2021;15: 034104.
Miao S, Jiang Z, Luo J, Zhong F, Wei H, Solar X, Jiang X, Jiang M, Liu YH. A robotic system with embedded open microfluidic chip for computerized embryo vitrification. IEEE Trans Biomed Eng. 2022;69:3562–71.
Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23:1177.
Ghersevich S, Massa E, Zumoffen C. Oviductal secretion and gamete interplay. Copy. 2015;149:R1–14.
Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a overview of physiology and pathophysiology. J Help Reprod Genet. 2014;31:1337–47.
Menezo Y, Guerin P. The mammalian oviduct: biochemistry and physiology. Eur J Obstet Gyn R B. 1997;73:99–104.
Huang BK, Choma MA. Microscale imaging of cilia-driven fluid move. Cell Mol Life Sci. 2015;72:1095–113.
Buhi WC. Characterization and organic roles of oviduct-specific, oestrogen-dependent glycoprotein. Copy. 2002;123:355–62.
Ferraz M, Henning HHW, Stout TAE, Vos P, Gadella BM. Designing three-d in vitro oviduct tradition programs to review mammalian fertilization and embryo manufacturing. Ann Biomed Eng. 2017;45:1731–44.
Leemans B, Bromfield EG, Stout TAE, Vos M, Van Der Ham H, Van Beek R, Van Soom A, Gadella BM, Henning H. Growing a reproducible protocol for culturing practical confluent monolayers of differentiated equine oviduct epithelial cellsdagger. Biol Reprod. 2022;106:710–29.
Romero-Aguirregomezcorta J, Laguna-Barraza R, Fernández-González R, Štiavnická M, Ward F, Cloherty J, McAuliffe D, Larsen PB, Grabrucker AM, Gutiérrez-Adán A. Sperm choice by rheotaxis improves sperm high quality and early embryo improvement. Copy. 2021;161:343–52.
Yetkinel S, Kilicdag EB, Aytac PC, Haydardedeoglu B, Simsek E, Cok T. Results of the microfluidic chip approach in sperm choice for intracytoplasmic sperm injection for unexplained infertility: a potential, randomized managed trial. J Help Reprod Genet. 2019;36:403–9.
Huang HY, Kao WL, Wang YW, Yao DJ. Utilizing a dielectrophoretic microfluidic biochip enhanced fertilization of mouse embryo in vitro. Micromachines. 2020;11:714.
Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ. Digital microfluidic dynamic tradition of mammalian embryos on an electrowetting on dielectric (EWOD) Chip. PLoS ONE. 2015;10: e0124196.
Huang HY, Huang YH, Kao WL, Yao DJ. Embryo formation from low sperm focus by utilizing dielectrophoretic pressure. Biomicrofluidics. 2015;9: 022404.
Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS focus within the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother. 2022;154: 113567.
Clark SG, Haubert Okay, Beebe DJ, Ferguson CE, Wheeler MB. Discount of polyspermic penetration utilizing biomimetic microfluidic expertise throughout in vitro fertilization. Lab Chip. 2005;5:1229–32.
Zhang B, Yin TL, Yang J. A novel microfluidic system for choosing human sperm to extend the proportion of morphologically regular, motile sperm with uncompromised DNA integrity. Anal Strategies. 2015;7:5981–8.
Ferraz M, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Holker M, Besenfelder U, Mokry M, Vos P, Stout TAE, et al. An oviduct-on-a-chip offers an enhanced in vitro atmosphere for zygote genome reprogramming. Nat Commun. 2018;9:4934.
Yu SX, Wu Y, Luo H, Liu Y, Chen YC, Wang YJ, Liu W, Tang J, Shi H, Gao H, et al. Escaping habits of sperms on the biomimetic oviductal floor. Anal Chem. 2023;95:2366–74.
Grimbizis GF. The pathophysiology of septate uterus. BJOG. 2019;126:1200.
Kim SY, Kim SK, Lee JR, Woodruff TK. Ovary is critical to the well being of uterus. J Gynecol Oncol. 2016;27: e35.
Toson B, Simon C, Moreno I. The endometrial microbiome and its impression on human conception. Int J Mol Sci. 2022;23:485.
Elnashar AM. Influence of endometrial microbiome on fertility. Center East Fertil Soc J. 2021;26:1.
Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, Cui W. Microenvironment-protected exosome-hydrogel for facilitating endometrial regeneration, fertility restoration, and stay beginning of offspring. Small. 2021;17: e2007235.
Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, Osteen KG. Compartmentalized tradition of perivascular stroma and endothelial cells in a microfluidic mannequin of the human endometrium. Ann Biomed Eng. 2017;45:1758–69.
Gnecco JS, Ding T, Smith C, Lu J, Bruner-Tran KL, Osteen KG. Hemodynamic forces improve decidualization by way of endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic mannequin of the human endometrium. Hum Reprod. 2019;34:702–14.
Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, Kang YJ. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720–31.
Radnaa E, Richardson LS, Sheller-Miller S, Baljinnyam T, de Castro SM, Kumar Kammala A, Urrabaz-Garza R, Kechichian T, Kim S, Han A, Menon R. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm beginning. Lab Chip. 2021;21:1956–73.
Guzeloglu-Kayisli O, Kayisli UA, Taylor HS. The function of progress elements and cytokines throughout implantation: endocrine and paracrine interactions. Semin Reprod Med. 2009;27:62–79.
Paria BC, Track H, Dey SK. Implantation: molecular foundation of embryo-uterine dialogue. Int J Dev Biol. 2002;45:597–605.
Yu W, Niu W, Wang S, Chen X, Solar BO, Wang F, Solar Y. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells. Exp Ther Med. 2015;10:43–50.
Rubio C, Simón C, Mercader A, Garcia-Velasco J, Remohí J, Pellicer A. Medical expertise using co-culture of human embryos with autologous human endometrial epithelial cells. Hum Reprod. 2000;15(Suppl 6):31–8.
Arnold JT, Kaufman DG, Seppälä M, Lessey BA. Endometrial stromal cells regulate epithelial cell progress in vitro: a brand new co-culture mannequin. Hum Reprod. 2001;16:836–45.
van den Model AD, Rubinstein E, de Jong PC, van den Berg M, van Duursen MBM. Major endometrial 3D co-cultures: a comparability between human and rat endometrium. J Steroid Biochem Mol Biol. 2019;194: 105458.
Moutinho TJ Jr, Panagides JC, Biggs MB, Medlock GL, Kolling GL, Papin JA. Novel co-culture plate permits progress dynamic-based evaluation of contact-independent microbial interactions. PLoS ONE. 2017;12: e0182163.
Chen YS, Lo T-W, Huang H-Y, Li L-M, Wang Y-W, Yao D-J, Hsu W-S, Liu C-H. A microfluidic lab chip for the manipulation and co-culturing of embryos with stromal cells. Sens Actuators B Chem. 2021;349: 130820.
Bhosale S, Chen M, Liu CH. In vitro improvement of the embryo in a microfluidic system for computerized embryo trapping and co-culture with endometrial cells. In: 2019 twentieth Worldwide convention on solid-state sensors, actuators and microsystems and eurosensors XXXIII (transducers and eurosensors XXXIII); 23–27 June 2019. 2019: Berlin: IEEE. pp. 736–739.
Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal progress: the function of the mom, placenta, and fetus. Endocr Rev. 2006;27:141–69.
Robinson J, Chidzanja S, Sort Okay, Lok F, Owens P, Owens J. Placental management of fetal progress. Reprod Fertil Dev. 1995;7:333–44.
Costa MA. The endocrine perform of human placenta: an outline. Reprod Biomed Onl. 2016;32:14–43.
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for detection of human placental pathologies: a overview of rising applied sciences and present tendencies. Transl Res. 2019;213:23–49.
Mosavati B, Oleinikov AV, Du E. Improvement of an organ-on-a-chip-device for examine of placental pathologies. Int J Mol Sci. 2020;21:8755.
Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022;12:15278.
Burton GJ, Fowden AL. Evaluate: the placenta and developmental programming: balancing fetal nutrient calls for with maternal useful resource allocation. Placenta. 2012;33(Suppl):S23-27.
Cherubini M, Erickson S, Haase Okay. Modelling the human placental interface in vitro: a overview. Micromachines. 2021;12:884.
Boos JA, Misun PM, Brunoldi G, Furer LA, Aengenheister L, Modena M, Rousset N, Buerki-Thurnherr T, Hierlemann A. Microfluidic co-culture platform to recapitulate the maternal-placental-embryonic axis. Adv Biol. 2021;5: e2100609.
Pu Y, Gingrich J, Veiga-Lopez A. A three-d microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021;21:546–57.
Mandt D, Gruber P, Markovic M, Tromayer M, Rothbauer M, Kratz SRA, Ali SF, Hoorick JV, Holnthoner W, Muhleder S, et al. Fabrication of biomimetic placental barrier buildings inside a microfluidic system using two-photon polymerization. Int J Bioprint. 2018;4:144.
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Younger R, Kanter J, Gordon S, et al. A microphysiological mannequin of human trophoblast invasion throughout implantation. Nat Commun. 2022;13:1252.
Cherubini M, Haase Okay. A bioengineered mannequin for finding out vascular-pericyte interactions of the placenta. In: Margadant C, editor. Cell migration in three dimensions. New York: Springer; 2023. p. 409–23.
Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-chip: in vitro examine of caffeine transport throughout placental barrier utilizing liquid chromatography mass spectrometry. Glob Chall. 2019;3:1800112.
Richardson LS, Kammala AK, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of medicine utilizing human feto-maternal interface organ-on-chips present insights into pharmacokinetics and efficacy. Lab Chip. 2022;22:4574–92.
Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm analysis. Traits Biotechnol. 2015;33:221–9.
Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME. Improvement of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering functions. Bioconjug Chem. 2015;26:1571–81.
Eamer L, Nosrati R, Vollmer M, Zini A, Sinton D. Microfluidic evaluation of swimming media for motility-based sperm choice. Biomicrofluidics. 2015;9: 044113.
Ivic A, Onyeaka H, Girling A, Brewis IA, Ola B, Hammadieh N, Papaioannou S, Barratt CLR. Vital analysis of methylcellulose as a substitute medium in sperm migration assessments. Hum Reprod. 2002;17:143–9.
Lee M, Park JW, Kim D, Kwon H, Cho MJ, Lee EJ, Shin TE, Kim DK, Lee S, Byeun DG, et al. Viscous cervical environment-on-a-chip for choosing high-quality sperm from human semen. Biomedicines. 2021;9:1439.
Kitaya Okay, Nagai Y, Arai W, Sakuraba Y, Ishikawa T. Characterization of microbiota in endometrial gluid and vaginal secretions in infertile ladies with repeated implantation failure. Mediators Inflamm. 2019;2019:4893437.
Paavonen J, Brunham RC. Bacterial vaginosis and desquamative inflammatory vaginitis. N Engl J Med. 2018;379:2246–54.
Wang J, Li Z, Ma X, Du L, Jia Z, Cui X, Yu L, Yang J, Xiao L, Zhang B, et al. Translocation of vaginal microbiota is concerned in impairment and safety of uterine well being. Nat Commun. 2021;12:4191.
Riganelli L, Iebba V, Piccioni M, Illuminati I, Bonfiglio G, Neroni B, Calvo L, Gagliardi A, Levrero M, Merlino L, et al. Structural variations of vaginal and endometrial microbiota: hints on feminine infertility. Entrance Cell Infect Microbiol. 2020;10:350.
Kadogami D, Nakaoka Y, Morimoto Y. Use of a vaginal probiotic suppository and antibiotics to affect the composition of the endometrial microbiota. Reprod Biol. 2020;20:307–14.
Punzon-Jimenez P, Labarta E. The impression of the feminine genital tract microbiome in ladies well being and replica: a overview. J Help Reprod Genet. 2021;38:2519–41.
Lull Okay, Saare M, Peters M, Kakhiani E, Zhdanova A, Salumets A, Boyarsky Okay, Org E. Variations in microbial profile of endometrial fluid and tissue samples in ladies with in vitro fertilization failure are pushed by Lactobacillus abundance. Acta Obstet Gynecol Scand. 2022;101:212–20.
Spence D, Melville C. Vaginal discharge. BMJ. 2007;335:1147–51.
Hsieh Okay, Mach KE, Zhang P, Liao JC, Wang TH. Combating antimicrobial resistance by way of single-cell diagnostic applied sciences powered by droplet microfluidics. Acc Chem Res. 2022;55:123–33.
Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022;10:201.
Shu Z, Hughes SM, Fang C, Huang J, Fu B, Zhao G, Fialkow M, Lentz G, Hladik F, Gao D. A examine of the osmotic traits, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology. 2016;72:93–9.
Maenhoudt N, De Moor A, Vankelecom H. Modeling endometrium biology and illness. J Pers Med. 2022;12:1048.
Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Affected person-derived most cancers organoids as predictors of therapy response. Entrance Oncol. 2021;11: 641980.
Golabek-Grenda A, Olejnik A. In vitro modeling of endometriosis and endometriotic microenvironment: challenges and up to date advances. Cell Sign. 2022;97: 110375.
Chen Z, Dai Y, Dong Z, Li M, Mu X, Zhang R, Wang Z, Zhang W, Lang J, Leng J, Jiang X. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro mannequin of endometriosis. Integr Biol. 2012;4:1090–5.
Chen CH, Miller MA, Sarkar A, Beste MT, Isaacson KB, Lauffenburger DA, Griffith LG, Han J. Multiplexed protease exercise assay for low-volume medical samples utilizing droplet-based microfluidics and its utility to endometriosis. J Am Chem Soc. 2013;135:1645–8.
Altayyeb A, Othman E, Khashbah M, Esmaeel A, El-Mokhtar M, Lambalk C, Mijatovic V, Abdelgawad M. Characterization of mechanical signature of eutopic endometrial stromal cells of endometriosis sufferers. Reprod Sci. 2020;27:364–74.
Kim J, Ushida T, Montagne Okay, Hirota Y, Yoshino O, Hiraoka T, Osuga Y, Furuakwa KS. Acquired contractile capability in human endometrial stromal cells by passive loading of cyclic tensile stretch. Sci Rep. 2020;10:9014.
Harada M, Osuga Y, Hirota Y, Koga Okay, Morimoto C, Hirata T, Yoshino O, Tsutsumi O, Yano T, Taketani Y. Mechanical stretch stimulates interleukin-8 manufacturing in endometrial stromal cells: attainable implications in endometrium-related occasions. J Clin Endocrinol Metab. 2005;90:1144–8.
Elad D, Zaretsky U, Kuperman T, Gavriel M, Lengthy M, Jaffa A, Grisaru D. Tissue engineered endometrial barrier uncovered to peristaltic move shear stresses. APL Bioeng. 2020;4: 026107.
Bulletti C, De Ziegler D, Polli V, Del Ferro E, Palini S, Flamigni C. Traits of uterine contractility throughout menses in ladies with gentle to reasonable endometriosis. Fertil and Steril. 2002;77:1156–61.
Kirschen GW, AlAshqar A, Miyashita-Ishiwata M, Reschke L, El Sabeh M, Borahay MA. Vascular biology of uterine fibroids: connecting fibroids and vascular issues. Copy. 2021;162:R1.
Banerjee S, Xu W, Chowdhury I, Driss A, Ali M, Yang Q, Al-Hendy A, Thompson WE. Human myometrial and uterine fibroid stem cell-derived organoids for intervening the pathophysiology of uterine fibroid. Reprod Sci. 2022;29:2607–19.
Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Nice Obstetrical Syndromes” are related to issues of deep placentation. Am J Obstet Gynecol. 2011;204:193–201.
Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014. https://doi.org/10.3791/51046-v.
Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML. A microfluidics assay to review invasion of human placental trophoblast cells. J R Soc Interface. 2017;14:20170131.
Ghorbanpour SM, Richards C, Pienaar D, Sesperez Okay, Aboulkheyr Es H, Nikolic VN, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, et al. A placenta-on-a-chip mannequin to find out the regulation of FKBPL and galectin-3 in preeclampsia. Cell Mol Life Sci. 2023;80:44.
Yokoyama Y, Nakamura T, Nakamura R, Irahara M, Aono T, Sugino H. Identification of activins and follistatin proteins in human follicular fluid and placenta. J Clin Endocrinol Metab. 1995;80:915–21.
Li J, Qi Y, Yang Okay, Zhu L, Cui X, Liu Z. Follistatin is a novel chemoattractant for migration and invasion of placental trophoblasts of mice. Cells. 2022;11:3816.
Abbaspour A, Casillas AL, McGregor SM, Kreeger PK. Bioengineering approaches to enhance gynecological most cancers outcomes. Curr Opin Biomed Eng. 2022;22:100384.
Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Might 3D fashions of most cancers improve drug screening? Biomaterials. 2020;232: 119744.
Ding L, Liu C, Yin S, Zhou Z, Chen J, Chen X, Chen L, Wang D, Liu B, Liu Y, et al. Engineering a dynamic three-dimensional cell culturing microenvironment utilizing a “sandwich” structure-liked microfluidic system with 3D printing scaffold. Biofabrication. 2022;14: 045014.
Poveda A, Romero I. Superior ovarian most cancers: 20 years of ovarian most cancers therapy. Ann Oncol. 2016;27(Suppl 1):i72–3.
Wu Y, Wang C, Wang P, Wang C, Zhang Y, Han L. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian most cancers screening. RSC Adv. 2021;11:8124–33.
Lopez E, Kamboj S, Chen C, Wang Z, Kellouche S, Leroy-Dudal J, Carreiras F, Lambert A, Aimé C. In vitro fashions of ovarian most cancers: bridging the hole between pathophysiology and mechanistic fashions. Biomolecules. 2023;13:103.
Dadgar N, Gonzalez-Suarez AM, Fattahi P, Hou X, Weroha JS, Gaspar-Maia A, Stybayeva G, Revzin A. A microfluidic platform for cultivating ovarian most cancers spheroids and testing their responses to chemotherapies. Microsyst Nanoeng. 2020;6:93.
Ibrahim LI, Hajal C, Offeddu GS, Gillrie MR, Kamm RD. Omentum-on-a-chip: a multicellular, vascularized microfluidic mannequin of the human peritoneum for the examine of ovarian most cancers metastases. Biomaterials. 2022;288: 121728.
Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T. Move induces epithelial-mesenchymal transition, mobile heterogeneity and biomarker modulation in 3D ovarian most cancers nodules. Proc Natl Acad Sci USA. 2013;110:E1974–83.
Vandghanooni S, Sanaat Z, Barar J, Adibkia Okay, Eskandani M, Omidi Y. Latest advances in aptamer-based nanosystems and microfluidics gadgets for the detection of ovarian most cancers biomarkers. Traits Analyt Chem. 2021;143: 116343.
Zhang P, Zhou X, He M, Shang Y, Tetlow AL, Godwin AK, Zeng Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3:438–51.
Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection in direction of blood-based ovarian most cancers prognosis. Lab Chip. 2016;16:489–96.
Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA, Smith BQ, Lightfoot MDS, Gogna R, Flannery MM, Hays J, Hansford DJ, et al. A microfluidic chip permits isolation of exosomes and institution of their protein profiles and related signaling pathways in ovarian most cancers. Most cancers Res. 2019;79:3503–13.
Wang C-H, Weng C-H, Che Y-J, Wang Okay, Lee G-B. Most cancers cell-specific oligopeptides chosen by an built-in microfluidic system from a phage show library for ovarian most cancers prognosis. Theranostics. 2015;5:431–42.
Chung YD, Liu TH, Liang YL, Lin CN, Hsu KF, Lee GB. An built-in microfluidic platform for detection of ovarian clear cell carcinoma mRNA biomarker FXYD2. Lab Chip. 2021;21:2625–32.
Hamilton CA, Pothuri B, Arend RC, Backes FJ, Gehrig PA, Soliman PT, Thompson JS, City RR, Burke WM. Endometrial most cancers: a society of gynecologic oncology evidence-based overview and suggestions. Gynecol Oncol. 2021;160:817–26.
Johnson N, Bryant A, Miles T, Hogberg T, Cornes P. Adjuvant chemotherapy for endometrial most cancers after hysterectomy. Cochrane Knowledge Sys Rev. 2011. https://doi.org/10.1002/14651858.CD003175.pub2.
Chitcholtan Okay, Asselin E, Mum or dad S, Sykes PH, Evans JJ. Variations in progress properties of endometrial most cancers in three dimensional (3D) tradition and 2D cell monolayer. Exp Cell Res. 2013;319:75–87.
Wu Y-L, Li J-Q, Sulaiman Z, Liu Q, Wang C-Y, Liu S-P, Gao Z-L, Cheng Z-P. Optimization of endometrial most cancers organoids institution by cancer-associated fibroblasts. Neoplasma. 2022;69:877.
Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, Heremans R, Perneel L, Kobayashi H, Van Zundert I, et al. Affected person-derived organoids from endometrial illness seize medical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21:1041–51.
Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Most cancers of the cervix uteri: 2021 replace. Int J Gynaecol Obstet. 2021;155(Suppl 1):28–44.
Kokka F, Bryant A, Brockbank E, Powell M, Oram D. Hysterectomy with radiotherapy or chemotherapy or each for girls with domestically superior cervical most cancers. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD010260.pub2.
Johnson CA, James D, Marzan A, Armaos M. Cervical most cancers: an outline of pathophysiology and administration. Semin Oncol Nurs. 2019;35:166–74.
Tewari KS, Sill MW, Lengthy HJ III, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE. Improved survival with bevacizumab in superior cervical most cancers. New Eng J Med. 2017;377:702–702.
Guha P, Heatherton KR, O’Connell KP, Alexander IS, Katz SC. Assessing the way forward for stable tumor immunotherapy. Biomedicines. 2022;10:655.
Adams M, Jasani B, Fiander A. Human papilloma virus (HPV) prophylactic vaccination: challenges for public well being and implications for screening. Vaccine. 2007;25:3007–13.
Viti J, Poljak M, Ostrbenk A, Bhatia R, Alcaniz Boada E, Cornall AM, Cuschieri Okay, Garland S, Xu L, Arbyn M. Validation of EUROArray HPV take a look at utilizing the VALGENT framework. J Clin Virol. 2018;108:38–42.
Shah SS, Senapati S, Klacsmann F, Miller DL, Johnson JJ, Chang HC, Stack MS. Present applied sciences and up to date developments for screening of HPV-associated cervical and oropharyngeal cancers. Cancers. 2016;8:85.
Zhao X, Li X, Yang W, Peng J, Huang J, Mi S. An built-in microfluidic detection system for the automated and fast prognosis of high-risk human papillomavirus. Analyst. 2021;146:5102–14.
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, et al. Advances in most cancers immunotherapy 2019—newest tendencies. J Exp Clin Most cancers Res. 2019;38:268.
Inan H, Wang S, Inci F, Baday M, Zangar R, Kesiraju S, Anderson KS, Cunningham BT, Demirci U. Isolation, detection, and quantification of most cancers biomarkers in HPV-associated malignancies. Sci Rep. 2017;7:3322.
Du Z, Colls N, Cheng KH, Vaughn MW, Gollahon L. Microfluidic-based diagnostics for cervical most cancers cells. Biosens Bioelectron. 2006;21:1991–5.
Howes PD, Chandrawati R, Stevens MM. Colloidal nanoparticles as superior organic sensors. Science. 2014;346:1247390.
Gu Y, Li Z, Ge S, Mao Y, Gu Y, Cao X, Lu D. A microfluidic chip utilizing Au@SiO(2) array-based extremely SERS-active substrates for ultrasensitive detection of twin cervical cancer-related biomarkers. Anal Bioanal Chem. 2022;414:7659–73.
Wang N, Wang J, Meng X, Bao Y, Wang S, Li T. 3D microfluidic in vitro mannequin and bioinformatics integration to review the consequences of Spatholobi Caulis tannin in cervical most cancers. Sci Rep. 2018;8:12285.
Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Dyer S. Worldwide committee for monitoring assisted reproductive expertise: world report on assisted reproductive expertise, 2011. Fertil Steril. 2018;110:1067–80.
Shanner L, Nisker J. Bioethics for clinicians: 26. Assisted reproductive applied sciences. Can Med Assoc J. 2001;164:1589–94.
Weng L. IVF-on-a-chip: current advances in microfluidics expertise for in vitro fertilization. SLAS Technol. 2019;24:373–85.
Thapa S, Heo YS. Microfluidic expertise for in vitro fertilization (IVF). JMST Adv. 2019;1:1–11.
Kashaninejad N, Shiddiky MJA, Nguyen NT. Advances in microfluidics-based assisted reproductive expertise: from sperm sorter to reproductive system-on-a-chip. Adv Bio. 2018;2:1700197.
Alias AB, Huang H-Y, Yao D-J. A overview on microfluidics: an help to assisted reproductive expertise. Molecules. 2021;26:4354.
Smith GD, Takayama S. Software of microfluidic applied sciences to human assisted replica. Mol Hum Reprod. 2017;23:257–68.
Sequeira RC, Criswell T, Atala A, Yoo JJ. Microfluidic programs for assisted reproductive applied sciences: benefits and potential functions. Tissue Eng Regen Med. 2020;17:787–800.
Marzano G, Chiriaco MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V, Ferramosca A, Maruccio G. Sperm choice in assisted replica: a overview of established strategies and cutting-edge potentialities. Biotechnol Adv. 2020;40: 107498.
Beebe D, Wheeler M, Zeringue H, Walters E, Raty S. Microfluidic expertise for assisted replica. Theriogenology. 2002;57:125–35.
Thorp HH. ChatGPT is enjoyable, however not an writer. Science. 2023;379:313.