Fadeel, B. et al. Superior instruments for the security evaluation of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).
Winkler, D. A. Function of synthetic intelligence and machine studying in nanosafety. Small 16, 2001883 (2020).
Cherkasov, A. et al. QSAR modeling: the place have you ever been? The place are you going to? J. Med. Chem. 57, 4977–5010 (2014).
Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).
Puzyn, T. et al. Utilizing nano-QSAR to foretell the cytotoxicity of steel oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).
Jeliazkova, N. et al. In direction of FAIR nanosafety knowledge. Nat. Nanotechnol. 16, 644–654 (2021).
Rybińska-Fryca, A., Mikolajczyk, A. & Puzyn, T. Construction–exercise prediction networks (SAPNets): a step past Nano-QSAR for efficient implementation of the safe-by-design idea. Nanoscale 12, 20669–20676 (2020).
Marchese Robinson, R. L. et al. How ought to the completeness and high quality of curated nanomaterial knowledge be evaluated? Nanoscale 8, 9919–9943 (2016).
Muratov, E. N. et al. QSAR with out borders. Chem. Soc. Rev. https://doi.org/10.1039/d0cs00098a (2020).
Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and threat evaluation. Nano In the present day https://doi.org/10.3390/nano10102017 (2020).
Papadiamantis, A. G. et al. Predicting cytotoxicity of steel oxide nanoparticles utilizing Isalos Analytics Platform. Nanomaterials 10, 2493 (2020).
Puzyn, T. et al. in Latest Advances in Qsar Research: Strategies and Functions Vol. 8 (eds. Puzyn, T. et al.) 127–176 (Springer, 2010).
Shoombuatong, W. et al. in Advances in QSAR Modeling (Ed. Roy, Okay.) 3–55 (Springer, 2017).
Karakus, C. O. & Winkler, D. A. Overcoming roadblocks in computational roadmaps to the long run for protected nanotechnology. Nano Futures 5, 22002 (2021).
Haase, A. & Klaessig, F. (eds) EU US roadmap nanoinformatics 2030. Zenodo https://doi.org/10.5281/zenodo.1486012 (2018).
Mech, A. et al. Insights into prospects for grouping and read-across for nanomaterials in EU chemical compounds laws. Nanotoxicology 13, 119–141 (2019).
Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Authorized and sensible challenges in classifying nanomaterials in response to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).
Regulation (EC) No 1907/2006 of the European Parliament and of the Council (EUR-Lex, 18 December 2006); https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10
Fee Regulation (EU) 2018/1881 (EUR-Lex, 3 December 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881
Subbotina, J. & Lobaskin, V. Multiscale modeling of bio-nano interactions of zero-valent silver nanoparticles. J. Phys. Chem. B 126, 1301–1314 (2022).
Kochev, N., Jeliazkova, N. & Tsakovska, I. in Points in Toxicology (eds. Neagu, D., Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).
Fee Regulation (EU) 2018/1881 of three December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Analysis, Authorisation and Restriction of Chemical substances (REACH) as regards Annexes I, III,VI, V (European Fee, 2018).
Steerage on Info Necessities and Chemical Security Evaluation: Appendix R.6-1 for Nanomaterials Relevant to the Steerage on QSARs and Grouping of Chemical substances Model 2.0, 3 (ECHA, 2019); https://doi.org/10.2823/273911
Burello, E. Evaluate of (Q)SAR fashions for regulatory evaluation of nanomaterials dangers. NanoImpact 8, 48–58 (2017).
Lynch, I., Weiss, C. & Valsami-Jones, E. A technique for grouping of nanomaterials primarily based on key physico-chemical descriptors as a foundation for safer-by-design NMs. Nano In the present day 9, 266–270 (2014).
Lynch, I., Afantitis, A., Leonis, G., Melagraki, G. & Valsami-Jones, E. in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics Vol. 24 (Ed. Roy, Okay.) 385–424 (Springer, 2017).
Lynch, I. & Lee, R. G. in Innovation, Expertise, and Data Administration (eds. Murphy, F. et al.) 145–169 (Springer, 2016).
Mülhopt, S. et al. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8, 311 (2018).
Yao, Y. et al. Excessive-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).
Kluender, E. J. et al. Catalyst discovery by means of megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).
Poisonous Substances Management Act (US EPA,1979): https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act
TSCA Stock Standing of Nanoscale Substances – Normal Method (US EPA, 2008); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under
Nano-InChI working group; https://www.inchi-trust.org/nanomaterials/
Lynch, I. et al. Can an InChI for nano handle the necessity for a simplified illustration of advanced nanomaterials throughout experimental and nanoinformatics research? Nanomaterials 10, (2020).
Toropova, A. P. & Toropov, A. A. Nanomaterials: Quasi-SMILES as a versatile foundation for regulation and environmental threat evaluation. Sci. Whole Environ. 823, 153747 (2022).
Toropov, A. A., Sizochenko, N., Toropova, A. P. & Leszczynski, J. In direction of the event of worldwide nano-quantitative structure-property relationship fashions: zeta potentials of steel oxide nanoparticles. Nanomaterials 8, 243 (2018).
Mikolajczyk, A. et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts. Environ. Sci. Nano 5, 1150–1160 (2018).
Mikolajczyk, A. et al. A chemoinformatics strategy for the characterization of hybrid nanomaterials: safer and environment friendly design perspective. Nanoscale 11, 11808–11818 (2019).
Roy, J., Ojha, P. Okay. & Roy, Okay. Danger evaluation of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR strategy utilizing easy periodic desk primarily based descriptors. Nanotoxicology 13, 701–716 (2019).
Svendsen, C. et al. Key rules and operational practices for improved nanotechnology environmental publicity evaluation. Nat. Nanotechnol. 15, 731–742 (2020).
Amos, J. D. et al. The NanoInformatics Data Commons: capturing spatial and temporal nanomaterial transformations in various techniques. NanoImpact 23, 100331 (2021).
Di Cristo, L. et al. Grouping hypotheses and an built-in strategy to testing and evaluation of nanomaterials following oral ingestion. Nanomaterials 11, 2623 (2021).
Afantitis, A., Melagraki, G., Tsoumanis, A., Valsami-Jones, E. & Lynch, I. A nanoinformatics resolution help instrument for the digital screening of gold nanoparticle mobile affiliation utilizing protein corona fingerprints. Nanotoxicology 12, 1148–1165 (2018).
Wyrzykowska, E., Mikolajczyk, A., Sikorska, C. & Puzyn, T. Growth of a novel in silico mannequin of zeta potential for steel oxide nanoparticles: a nano-QSPR strategy. Nanotechnology 27, 1–8 (2016).
Mikolajczyk, A. et al. Zeta potential for steel oxide nanoparticles: a predictive mannequin developed by a nano-quantitative structure-property relationship strategy. Chem. Mater. 27, 2400–2407 (2015).
Grzelczak, M., Liz-Marzan, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).
Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).
Baer, D. R., Munusamy, P. & Thrall, B. D. Provenance data as a instrument for addressing engineered nanoparticle reproducibility challenges. Biointerphases 11, 04B401 (2016).
Mancardi, G. et al. Multi-scale modelling of aggregation of TiO2 nanoparticle suspensions in water. Nanomaterials 12, 217 (2022).
Alsharif, S. A., Energy, D., Rouse, I. & Lobaskin, V. In silico prediction of protein adsorption power on titanium dioxide and gold nanoparticles. Nanomaterials 10, 1967 (2020).
Rouse, I. et al. First rules characterisation of bio–nano interface. Phys. Chem. Chem. Phys. 23, 13473–13482 (2021).
Rouse, I. & Lobaskin, V. A tough-sphere mannequin of protein corona formation on spherical and cylindrical nanoparticles. Biophys. J. 120, 4457–4471 (2021).
Buzea, C., Pacheco, I. I. & Robbie, Okay. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).
Rabanel, J.-M. et al. Nanoparticle heterogeneity: an rising structural parameter influencing particle destiny in organic media? Nanoscale 11, 383–406 (2019).
Adjei, I. M., Peetla, C. & Labhasetwar, V. Heterogeneity in nanoparticles influences biodistribution and concentrating on. Nanomedicine 9, 267–278 (2014).
Appendix for Nanoforms Relevant to the Steerage on Registration and Substance Identification (ECHA, 2019); https://doi.org/10.2823/832485
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M. & Prina-Mello, A. Measuring particle dimension distribution of nanoparticle enabled medicinal merchandise, the joint view of EUNCL and NCI-NCL. A step-by-step strategy combining orthogonal measurements with rising complexity. J. Management. Launch 299, 31–43 (2019).
Lundqvist, M. et al. The evolution of the protein corona round nanoparticles: A take a look at examine. ACS Nano 5, 7503–7509 (2011).
Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona decided utilizing a quantitative metabolomics strategy: a pilot examine. Small 16, 2000295 (2020).
Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling utilizing common nanodescriptors and numerous machine studying approaches. Nanoscale 11, 8352–8362 (2019).
Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Building of a web-based nanomaterial database by massive knowledge curation and modeling pleasant nanostructure annotations. Nat. Commun. 11, 1–10 (2020).
Sizochenko, N. et al. From primary physics to mechanisms of toxicity: the ‘liquid drop’ strategy utilized to develop predictive classification fashions for toxicity of steel oxide nanoparticles. Nanoscale 6, 13986–13993 (2014).
Sizochenko, N., Jagiello, Okay., Leszczynski, J. & Puzyn, T. How the ‘liquid drop’ strategy may very well be effectively utilized for quantitative structure-property relationship modeling of nanofluids. J. Phys. Chem. C 119, 25542–25547 (2015).
Utembe, W., Potgieter, Okay., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: Essential parameters wanted for threat evaluation of nanomaterials. Half. Fibre Toxicol. 12, 11 (2015).
Lin, S. et al. Zebrafish high-throughput screening to review the influence of dissolvable steel oxide nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776–1785 (2013).
Kokot, H. et al. Prediction of continual irritation for inhaled particles: the influence of fabric biking and quarantining within the lung epithelium. Adv. Mater. 32, 2003913 (2020).
Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from evaluation of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020).
Uhlen, M. et al. In direction of a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).
Wheeler, Okay. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).
Smythers, A. L. & Hicks, L. M. Mapping the plant proteome: instruments for surveying coordinating pathways. Emerg. Prime. Life Sci. 5, 203–220 (2021).
Jagiello, Okay. et al. Transcriptomics-based and AOP-informed structure-activity relationships to foretell pulmonary pathology induced by multiwalled carbon nanotubes. Small 17, 2003465 (2020).
Myden, A., Hill, E. & Fowkes, A. Utilizing adversarial consequence pathways to contextualise (Q)SAR predictions for reproductive toxicity – a case examine with aromatase inhibition. Reprod. Toxicol. 108, 43–55 (2022).
Ellison, C. M., Piechota, P., Madden, J. C., Enoch, S. J. & Cronin, M. T. D. Opposed consequence pathway (AOP) knowledgeable modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of motion. Environ. Sci. Technol. 50, 3995–4007 (2016).
Search engine optimization, M., Chae, C. H., Lee, Y., Kim, H. R. & Kim, J. Novel QSAR fashions for molecular initiating occasion modeling in two intersecting adversarial consequence pathways primarily based pulmonary fibrosis prediction for biocidal mixtures. Toxics 9, 59 (2021).
Halappanavar, S. et al. Opposed consequence pathways as a instrument for the design of testing methods to help the security evaluation of rising superior supplies on the nanoscale. Half. Fibre Toxicol. 17, 16 (2020).
Toropova, A. P., Toropov, A. A. & Benfenati, E. QSPR as a random occasion: solubility of fullerenes C[60] and C[70]. Fuller. Nanotub. Carbon Nanostruct. 27, 816–821 (2019).
Toropov, A. A. & Toropova, A. P. Quasi-SMILES and nano-QFAR: united mannequin for mutagenicity of fullerene and MWCNT beneath completely different situations. Chemosphere 139, 18–22 (2015).