Sunday, October 15, 2023
HomeNanotechnologyProximal tubules remove endocytosed gold nanoparticles by an organelle-extrusion-mediated self-renewal mechanism

Proximal tubules remove endocytosed gold nanoparticles by an organelle-extrusion-mediated self-renewal mechanism


  • Corridor, J.E. & Corridor, M. E. Guyton and Corridor Textbook of Medical Physiology (Elsevier Well being Sciences, 2010).

  • Du, B. et al. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhuo, J. L. & Li, X. C. Proximal nephron. Compr. Physiol. 3, 1079–1123 (2013).

    Article 

    Google Scholar
     

  • Gudehithlu, Ok. P., Pegoraro, A. A., Dunea, G., Arruda, J. A. L. & Singh, A. Ok. Degradation of albumin by the renal proximal tubule cells and the following destiny of its fragments. Kidney Int. 65, 2113–2122 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sancey, L. et al. Lengthy-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9, 2477–2488 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tenten, V. et al. Albumin is recycled from the first urine by tubular transcytosis. J. Am. Soc. Nephrol. 24, 1966–1980 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles within the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Article 

    Google Scholar
     

  • Oh, N. & Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014).


    Google Scholar
     

  • Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of mobile uptake and elimination of protein-coated gold nanoparticles of various dimensions and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Balfourier, A. et al. Sudden intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl Acad. Sci. USA 117, 103–113 (2019).

    Article 

    Google Scholar
     

  • Kim, C. et al. Regulating exocytosis of nanoparticles by way of host–visitor chemistry. Org. Biomol. Chem. 13, 2474–2479 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ho, L. W. C., Yin, B., Dai, G. & Choi, C. H. J. Impact of floor modification with hydrocarbyl teams on the exocytosis of nanoparticles. Biochemistry 60, 1019–1030 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ho, L. W. C. et al. Mammalian cells exocytose alkylated gold nanoparticles by way of extracellular vesicles. ACS Nano 16, 2032–2045 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, S., Huang, Y. & Zheng, J. Salivary excretion of renal-clearable silver nanoparticles. Angew. Chem. Int. Ed. 59, 19894–19898 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article 

    Google Scholar
     

  • Christensen, E. I., Rennke, H. G. & Carone, F. A. Renal tubular uptake of protein: impact of molecular cost. Am. J. Physiol. Ren. Physiol. 244, F436–F441 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Ok. et al. The impact of floor cost on in vivo biodistribution of PEG-oligocholic acid based mostly micellar nanoparticles. Biomaterials 32, 3435–3446 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tabata, Y. & Ikada, Y. Impact of the dimensions and floor cost of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9, 356–362 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X., Du, B. & Zheng, J. Glutathione-mediated biotransformation within the liver modulates nanoparticle transport. Nat. Nanotechnol. 14, 874–882 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schuh, C. D. et al. Mixed structural and useful imaging of the kidney reveals main axial variations in proximal tubule endocytosis. J. Am. Soc. Nephrol. 29, 2696–2712 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Miller, R. P., Tadagavadi, R. Ok., Ramesh, G. & Reeves, W. B. Mechanisms of cisplatin nephrotoxicity. Toxins 2, 2490–2518 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Stamellou, E., Leuchtle, Ok. & Moeller, M. J. Regenerating tubular epithelial cells of the kidney. Nephrol. Dialysis Transplant. 36, 1968–1975 (2020).

    Article 

    Google Scholar
     

  • Fujigaki, Y. Completely different modes of renal proximal tubule regeneration in well being and illness. World J. Nephrol. 1, 92–99 (2012).

    Article 

    Google Scholar
     

  • Fowler, B. A. Ultrastructural proof for nephropathy induced by long-term publicity to small quantities of methyl mercury. Science 175, 780–781 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria underneath neurotoxic stress. Nature 542, 367–371 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Moras, M., Lefevre, S. D. & Ostuni, M. A. From erythroblasts to mature crimson blood cells: organelle clearance in mammals. Entrance. Physiol. 8, 1076 (2017).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments