Walter N, Rupp M, Hinterberger T, Alt V. Prosthetic infections and the growing significance of psychological comorbidities: an epidemiological evaluation for Germany from 2009 by means of 2019. Orthopade. 2021;50(10):859–65.
Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Financial burden of periprosthetic joint an infection in the usa. J Arthroplasty. 2012;27(8 SUPPL.):61-65.e1.
Springer BD, Cahue S, Etkin CD, Lewallen DG, McGrory BJ. An infection burden in whole hip and knee arthroplasties: a global registry-based perspective. Arthroplast Immediately. 2017;3(2):137–40.
Leta TH, Lygre SHL, Schrama JC, Hallan G, Gjertsen JE, Dale H, et al. End result of revision surgical procedure for an infection after whole knee arthroplasty: outcomes of three surgical methods. JBJS Rev. 2019;7(6):1–10.
Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjærsgaard-Andersen P, Pedersen AB. The “true” incidence of surgically handled deep prosthetic joint an infection after 32,896 main whole hip arthroplasties. Acta Orthop. 2015;86(3):326–34.
Rupp M, Walter N, Lau E, Worlicek M, Kurtz SM, Alt V. Latest developments in revision knee arthroplasty in Germany. Sci Rep. 2021;11(1):1–7.
Izakovicova P, Borens O, Trampuz A. Periprosthetic joint an infection: present ideas and outlook. EFORT Open Rev. 2019;4(7):482–94.
Rimke C, Enz A, Bail HJ, Heppt P, Kladny B, von Lewinski G, et al. Analysis of the usual process for the remedy of periprosthetic joint infections (PJI) in Germany—outcomes of a survey inside the EndoCert initiative. BMC Musculoskelet Disord. 2020;21(1):1–8.
Vallabani NVS, Singh S, Karakoti AS. Magnetic nanoparticles: present developments and future points in diagnostics and nanomedicine. Curr Drug Metab. 2018;20(6):457–72.
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in most cancers remedy and prognosis. Adv Healthc Mater. 2020;9(9):1–57.
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical purposes: a evaluation. Artif Organs. 2021;45(11):1272–99.
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug supply: purposes and traits. Knowledgeable Opin Drug Deliv. 2019;16(1):69–78.
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic nanoparticles for biomedical purposes: from the soul of the earth to the deep historical past of ourselves. ACS Appl Bio Mater. 2021;4(8):5839–70.
Ding Y, Zeng L, Xiao X, Chen T, Pan Y. Multifunctional magnetic nanoagents for bioimaging and remedy. ACS Appl Bio Mater. 2021;4(2):1066–76.
Lamb J, Holland JP. Superior strategies for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med. 2018;59(3):382–9.
Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a brand new class of distinction brokers for MR imaging. Radiology. 1990;175(2):489–93.
Pham HN, Pham THG, Nguyen DT, Phan QT, Le TTH, Ha PT, et al. Magnetic inductive heating of organs of mouse fashions handled by copolymer coated Fe3O4 nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2017;8(2): 025013.
Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, et al. Growth of receptor focused magnetic iron oxide nanoparticles for environment friendly drug supply and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49. https://doi.org/10.1166/jbn.2008.007.
Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, et al. Remedy of infarcted coronary heart tissue through the seize and native supply of circulating exosomes by means of antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):1063–75.
Liu Y, Li R, Zhang L, Guo S. Nanomaterial-based immunocapture platforms for the popularity, isolation, and detection of circulating tumor cells. Entrance Bioeng Biotechnol. 2022;10(March):1–24.
Schwaminger SP, Fraga-García P, Clean-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by naked iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9.
Lübbe AS, Alexiou C, Bergemann C. Medical purposes of magnetic drug concentrating on. J Surg Res. 2001;95(2):200–6.
Bae YH, Park Okay. Focused drug supply to tumors: myths, actuality and risk. J Management Launch. 2011;153(3):198–205.
Torchilin VP. Drug concentrating on. Eur J Pharm Sci. 2000;11:S81-91.
Obermeier A, Küchler S, Matl FD, Pirzer T, Stemberger A, Mykhaylyk O, et al. Magnetic drug concentrating on as new therapeutic possibility for the remedy of biomaterial infections. J Biomater Sci Polym Ed. 2012;23(18):2321–36.
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte downside. Nano Immediately. 2015;10(4):487–510.
Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.
Gal N, Lassenberger A, Herrero-Nogareda L, Scheberl A, Charwat V, Kasper C, et al. Interplay of size-tailored PEGylated iron oxide nanoparticles with lipid membranes and cells. ACS Biomater Sci Eng. 2017;3(3):249–59.
Sivadasan D, Sultan MH, Madkhali OA, Alessa AA, Alsabei SH. Stealth liposomes (PEGylated) containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution research. Molecules. 2022;27(3):1086.
Jalil AR, Tobin MP, Discher DE. Suppressing or enhancing macrophage engulfment by means of using CD47 and associated peptides. Bioconjug Chem. 2022;35:1989.
Chen ZA, Wu SH, Chen P, Chen YP, Mou CY. Vital options for mesoporous silica nanoparticles encapsulated into erythrocytes. ACS Appl Mater Interfaces. 2019;11(5):4790–8.
Piao JG, Wang L, Gao F, You YZ, Xiong Y, Yang L. Erythrocyte membrane is an alternate coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal remedy. ACS Nano. 2014;8(10):10414–25.
Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, et al. Biodistribution, biocompatibility and focused accumulation of magnetic nanoporous silica nanoparticles as drug service in orthopedics. J Nanobiotechnology. 2020;18(1):14
Reifenrath J, Janßen HC, Warwas DP, Kietzmann M, Behrens P, Willbold E, et al. Implant-based path of magnetic nanoporous silica nanoparticles: affect of macrophage depletion and an infection. Nanomedicine. 2020;30: 102289.
Selander KS, Mönkkönen J, Karhukorpi EK, Härkönen P, Hannuniemi R, Väänänen HK. Traits of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol. 1996;50(5):1127–38.
Kozicky LK, Sly LM. Depletion and reconstitution of macrophages in mice. Strategies Mol Biol. 2019;1960:101–12.
Milne S, King GG. Superior imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis. 2014;6(11):1570–85.
Polyak A, Ross TL. Nanoparticles for SPECT and PET imaging: in direction of customized medication and theranostics. Curr Med Chem. 2018;25(34):4328–53.
Karageorgou MA, Vranješ-Djurić S, Radović M, Lyberopoulou A, Antić B, Rouchota M, et al. Gallium-68 labeled iron oxide nanoparticles coated with 2,3-dicarboxypropane-1,1-diphosphonic acid as a possible PET/MR imaging agent: a proof-of-concept research. Distinction Media Mol Imaging. 2017;2017: 6951240
Herzog H. PET/MRI: challenges, options and views. Z Med Phys. 2012;22(4):281–98.
Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a brand new strategy for purposeful and morphological imaging. Nat Med. 2008;14(4):459–65.
Thomas G, Boudon J, Maurizi L, Moreau M, Walker P, Severin I, et al. Revolutionary magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega. 2019;4(2):2637–48.
Naszályi Nagy L, Polyak A, Mihály J, Szécsényi Á, Szigyártó IC, Czégény ZS, et al. Silica@zirconia@poly(malic acid) nanoparticles: promising nanocarriers for theranostic purposes. J Mater Chem B. 2016;4(25):4420–9.
Polyak A, Naszalyi Nagy L, Mihaly J, Görres S, Wittneben A, Leiter I, et al. Preparation and (68)Ga-radiolabeling of porous zirconia nanoparticle platform for PET/CT-imaging guided drug supply. J Pharm Biomed Anal. 2017;137:146–50.
Polyak A, Képes Z, Trencsényi G. Implant imaging: views of nuclear imaging in implant, biomaterial, and stem cell analysis. Bioengineering. 2023;10(5):521.
Santos MA, Gil M, Marques S, Gano L, Cantinho G, Chaves S. N-carboxyalkyl derivatives of 3-hydroxy-4-pyridinones: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo analysis. J Inorg Biochem. 2002;92(1):43–54.
Faghihi Okay, Moghanian H. Synthesis and characterization of latest optically lively poly(amide-imide)s containing 1,3,4-oxadiazole moiety in the principle chain. Polym Bull. 2010;65(4):319–32.
Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M. FT-IR research of montmorillonite-chitosan nanocomposite supplies. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(4):784–8.
Zhao J, Wang J. Understanding the amide-II vibrations in β-peptides. J Phys Chem B. 2015;119(47):14831–9.
Thibault-Starzyk F, Payen R, Lavalley JC. IR proof of zeolitic hydroxy insertion in amide formation by the Ritter response. Chem Commun. 1996;23:2667–8.
Janßen HC, Warwas DP, Dahlhaus D, Meißner J, Taptimthong P, Kietzmann M, et al. In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant supplies with totally different magnetic properties. J Nanobiotechnology. 2018;16(1):96.
Ge J, Zhang Y, Dong Z, Jia J, Zhu J, Miao X, et al. Initiation of focused nanodrug supply in vivo by a multifunctional magnetic implant. ACS Appl Mater Interfaces. 2017;9(24):20771–8.
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Evaluation of nanoparticle supply to tumours. Nat Rev Mater. 2016;1(5):16014.
Torrice M. Does nanomedicine have a supply downside? ACS Cent Sci. 2016;2(7):434–7.
Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of Nanoparticles in drug-delivery methods. Nanomaterials. 2020;10(4):1–18.
Moghimi SM, Hunter AC, Murray JC. Lengthy-circulating and target-specific nanoparticles: principle to apply. Pharmacol Rev. 2001;53(2):283–318.
Frank MM, Fries LF. The position of complement in irritation and phagocytosis. Immunol Immediately. 1991;12(9):322–6.
City DA, Rodriguez-Lorenzo L, Balog S, Kinnear C, Rothen-Rutishauser B, Petri-Fink A. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces. 2016;137:39–49.
Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle-protein corona complexes govern the organic fates and features of nanoparticles. J Mater Chem B. 2014;2(15):2060–83.
Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: tender and arduous corona. ACS Nano. 2012;6(3):2532–41.
Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, et al. PEG-copolymer-coated iron oxide nanoparticles that keep away from the reticuloendothelial system and act as kidney MRI distinction brokers. Nanoscale. 2018;10(29):14153–64.
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle measurement and floor properties decide the protein corona with doable implications for organic impacts. Proc Natl Acad Sci U S A. 2008;105(38):14265–70.
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Immediately. 2008;3(1-2):40-47.
Liu T, Choi H, Zhou R, Chen IW. RES blockade: a technique for enhancing effectivity of nanoparticle drug. Nano Immediately. 2015;10(1):11–21.
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona utilizing strategies to quntify change charges and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104(7):2050–5.
Lin CY, Yang CM, Lindén M. Affect of serum focus and floor functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC Adv. 2019;9(58):33912–21.
Amoozgar Z, Yeo Y. Latest advances in stealth coating of nanoparticle drug supply methods. WIREs Nanomed Nanobiotechnol. 2012;4(2):219–33.
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles floor modified by polyethylene glycol (PEG): influences of the corona (PEG chain size and floor density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.
Cauda V, Argyo C, Bein T. Affect of various PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem. 2010;20(39):8693–9.
Shim G, Miao W, Ko S, Park GT, Kim JY, Kim MG, et al. Immune-camouflaged graphene oxide nanosheets for damaging regulation of phagocytosis by macrophages. J Mater Chem B. 2017;5(32):6666–75.
Verrecchia T, Spenlehauer G, Bazile DV, Murry-Brelier A, Archimbaud Y, Veillard M. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Management Launch. 1995;36(1–2):49–61.
Mosqueira VCF, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: results of PEG chain size and density. Pharm Res. 2001;18(10):1411–9.
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles floor modified by polyethylene glycol (PEG). Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.
Ishida T, Kiwada H. Accelerated blood clearance of pegylated liposomes after repeated injection. Drug Deliv Syst. 2004;19(6):495–510.
Rao L, Xu JH, Cai B, Liu H, Li M, Jia Y, et al. Artificial nanoparticles camouflaged with biomimetic erythrocyte membranes for decreased reticuloendothelial system uptake. Nanotechnology. 2016;27(8): 085106.
Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21.
Gheibihayat SM, Jaafari MR, Hatamipour M, Sahebkar A. Enchancment of the pharmacokinetic traits of liposomal doxorubicin utilizing CD47 biomimickry. J Pharm Pharmacol. 2021;73(2):169–77.
Liu C, Yu D, Ge F, Yang L, Wang Q. Fluorescent and mass spectrometric analysis of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem. 2019;411(18):4193–202.
Sobol NB, Korsen JA, Younes A, Edwards KJ, Lewis JS. ImmunoPET imaging of pancreatic tumors with 89Zr-labeled gold nanoparticle-antibody conjugates. Mol Imaging Biol. 2021;23(1):84–94.
Ohara Y, Oda T, Yamada Okay, Hashimoto S, Akashi Y, Miyamoto R, et al. Efficient supply of chemotherapeutic nanoparticles by depleting host Kupffer cells. Int J Most cancers. 2012;131(10):2402–10.
Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal illness: present standing and future purposes. Nat Rev Nephrol. 2016;12(12):738–53.
Adhipandito CF, Cheung SH, Lin YH, Wu SH. Atypical renal clearance of nanoparticles bigger than the kidney filtration threshold. Int J Mol Sci. 2021;22(20):11182.
Pellico J, Ruiz-Cabello J, Saiz-Alía M, del Rosario G, Caja S, Montoya M, et al. Quick synthesis and bioconjugation of 68Ga core-doped extraordinarily small iron oxide nanoparticles for PET/MR imaging. Distinction Media Mol Imaging. 2016. 11(3),203-210 https://doi.org/10.1002/cmmi.1681.
Madru R, Tran TA, Axelsson J, Ingvar C, Bibic A, Ståhlberg F, et al. (68)Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging. 2013;4(1):60–9.
Polyak A, Bankstahl JP, Besecke KFW, Hozsa C, Triebert W, Pannem RR, et al. Simplified 89Zr-labeling protocol of oxine (8-hydroxyquinoline) enabling extended monitoring of liposome-based nanomedicines and cells. Pharmaceutics. 2021;13(7):1097.
Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine in direction of most cancers: 111In-labeled nanoparticles. J Pharm Sci. 2012;101(7):2271–80.
Starmans LWE, Hummelink MAPM, Rossin R, Kneepkens ECM, Lamerichs R, Donato Okay, et al. 89 Zr- and Fe-labeled polymeric micelles for twin modality PET and T 1 -weighted MR imaging. Adv Healthc Mater. 2015;4(14):2137–45.