Hochella, M. F. et al. Pure, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363, eaau8299 (2019).
European Fee. Fee Advice of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union L275, 38–40 (2011).
Kaegi, R. et al. Artificial TiO2 nanoparticle emission from exterior facades into the aquatic atmosphere. Environ. Pollut. 156, 233–239 (2008).
Praetorius, A. et al. Single-particle multi-element fingerprinting (SpMEF) utilizing inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to determine engineered nanoparticles in opposition to the elevated pure background in soils. Environ. Sci. Nano 4, 307–314 (2017).
Flores, Ok. et al. Environmental purposes and up to date improvements in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 56, 1–26 (2021).
Mehrabi, Ok., Gunther, D. & Gundlach-Graham, A. Single-particle ICP-TOFMS with on-line microdroplet calibration for the simultaneous quantification of numerous nanoparticles in complicated matrices. Environ. Sci. Nano 6, 3349–3358 (2019).
Mehrabi, Ok., Kaegi, R., Gunther, D. & Gundlach-Graham, A. Rising investigator sequence: automated single-nanoparticle quantification and classification: a holistic research of particles into and out of wastewater therapy vegetation in Switzerland. Environ. Sci. Nano 8, 1211–1225 (2021).
Loosli, F. et al. Sewage spills are a significant supply of titanium dioxide engineered (nano)-particle launch into the atmosphere. Environ. Sci. Nano 6, 763–777 (2019).
Wang, J., Nabi, M. M., Erfani, M., Goharian, E. & Baalousha, M. Identification and quantification of anthropogenic nanomaterials in city rain and runoff utilizing single particle-inductively coupled plasma-time of flight-mass spectrometry. Environ. Sci. Nano 9, 714–729 (2022).
von der Kammer, F. et al. Evaluation of engineered nanomaterials in complicated matrices (atmosphere and biota): common issues and conceptual case research. Environ. Toxicol. Chem. 31, 32–49 (2012).
Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Publicity and potential dangers of engineered nanomaterials within the atmosphere—present data and instructions for the long run. Rev. Geophys. 58, e2020RG000710 (2020).
Bland, G. D., Battifarano, M., Pradas del Actual, A. E., Sarret, G. & Lowry, G. V. Distinguishing engineered TiO2 nanomaterials from pure Ti nanomaterials in soil utilizing SpICP-TOFMS and machine studying. Environ. Sci. Technol. 56, 2990–3001 (2022).
Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D. & Biswas, P. Assessing the dangers of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).
Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for various areas. Environ. Sci. Technol. 43, 9216–9222 (2009).
Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. World life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).
Track, R., Qin, Y., Suh, S. & Keller, A. A. Dynamic mannequin for the shares and launch flows of engineered nanomaterials. Environ. Sci. Technol. 51, 12424–12433 (2017).
Solar, T. Y. et al. Envisioning nano launch dynamics in a altering world: utilizing dynamic probabilistic modeling to evaluate future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).
Giese, B. et al. Dangers, launch and concentrations of engineered nanomaterial within the atmosphere. Sci. Rep. 8, 1565 (2018).
Solar, T. Y., Bornhöft, N. A., Hungerbühler, Ok. & Nowack, B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016).
Zheng, Y., Mutzner, L., Ort, C., Kaegi, R. & Gottschalk, F. Modelling engineered nanomaterials in wet-weather discharges. NanoImpact 16, 100188 (2019).
European Analysis Mission: GUIDEnano. https://www.guidenano.eu/ (accessed 18 October 2022).
European Analysis Mission (H2020): GRACIOUS. https://cordis.europa.eu/venture/id/760840/de (accessed 18 October 2022).
European Analysis Mission (8FP7): ENPRA. https://cordis.europa.eu/venture/id/228789/de (accessed 18 October 2022).
European Analysis Mission (H2020): RiskGONE. https://riskgone.wp.nilu.no/ (accessed 19 December 2022).
Isigonis, P. et al. Danger governance of nanomaterials: assessment of standards and instruments for threat communication, analysis, and mitigation. Nanomaterials (Basel) 9, 696 (2019).
Learn, S. A. Ok., Kass, G. S., Sutcliffe, H. R. & Hankin, S. M. Foresight research on the chance governance of latest applied sciences: the case of nanotechnology. Danger Anal. 36, 1006–1024 (2016).
Walser, T. et al. Publicity to engineered nanoparticles: mannequin and measurements for accident conditions in laboratories. Sci. Complete Environ. 420, 119–126 (2012).
Nowack, B., Mueller, N. C., Krug, H. F. & Wick, P. How one can take into account engineered nanomaterials in main accident rules. Environ. Sci. Eur. 26, 2 (2014).
Kim, Ok. H., Kim, J. B., Ji, J. H., Lee, S. B. & Bae, G. N. Nanoparticle formation in a chemical storage room as a brand new incidental nanoaerosol supply at a nanomaterial office. J. Hazard. Mater. 298, 36–45 (2015).
Pilou, M. et al. Modeling of occupational publicity to by chance launched manufactured nanomaterials in a manufacturing facility and calculation of inner doses by inhalation. Int. J. Occup. Environ. Well being 22, 249–258 (2016).
Delvosalle, C., Fiévez, C. & Pipart, A. ARAMIS venture: reference accident situations definition in Seveso institution. J. Danger Res. 9, 583–600 (2006).
Debray, B. et al. in Probabilistic Security Evaluation and Administration (eds Spitzer, C. et al.) 358–363 (Springer, 2004); https://doi.org/10.1007/978-0-85729-410-4_58
Tixier, J., Dusserre, G., Salvi, O. & Gaston, D. Assessment of 62 threat evaluation methodologies of commercial vegetation. J. Loss Prev. Course of Ind. 15, 291–303 (2002).
Khan, F., Rathnayaka, S. & Ahmed, S. Strategies and fashions in course of security and threat administration: previous, current and future. Course of Saf. Environ. Prot. 98, 116–147 (2015).
Bottomley, P. D. W. et al. Extreme accident analysis on the Transuranium Institute Karlsruhe: a assessment of previous expertise and its utility to future challenges. Ann. Nucl. Power 65, 345–356 (2014).
ARIA. La référence du retour d’expérience sur accidents technologiques. https://www.aria.developpement-durable.gouv.fr/ (accessed 18 October 2022).
Debray, B., Lacome, J.-M., Vignes, A., Gottschalk, F. Catalogue of Potential Unintentional Releases and Unintentional Launch Mannequin NanoFASE Mission Deliverable D4.4 (NanoFASE, 2019); http://nanofase.eu/paperwork/experiences
Security of Nuclear Energy Reactors (Mild Water-Cooled) and Associated Amenities WASH-1250 (US Atomic Power Fee, 1973).
Ha-Duong, M. & Journé, V. Calculating nuclear accident chances from empirical frequencies. Environ. Syst. Decis. 34, 249–258 (2014).
Hendren, C. O. et al. Bridging nanoEHS analysis efforts. NanoEHS Scrimmage. US–EU.org (2016); https://us-eu.org/wp-content/uploads/2016/06/Hendren_Scrimmage_Intro_V3.pdf
Maynard, A. D. & Aitken, R. J. ‘Protected dealing with of nanotechnology’ ten years on. Nat. Nanotech 11, 998–1000 (2016).
Syberg, Ok. & Hansen, S. F. Environmental threat evaluation of chemical compounds and nanomaterials—the very best basis for regulatory decision-making? Sci. Complete Environ. 541, 784–794 (2016).
Krug, H. F. Nanosafety analysis—are we heading in the right direction? Angew. Chem. Int. Ed. 53, 12304–12319 (2014).
Déclaration des substances à l’état nanoparticulaire. R-Nano.fr https://www.r-nano.fr/ (accessed 18 October 2022).
Dangers. Lloyd’s Rising Dangers Crew Report (Lloyd’s, 2007).
R: A Language and Surroundings for Statistical Computing (R Core Crew, 2018).