Wednesday, February 8, 2023
HomeNanotechnologyPredicting unintentional launch of engineered nanomaterials to the atmosphere

Predicting unintentional launch of engineered nanomaterials to the atmosphere


  • Hochella, M. F. et al. Pure, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363, eaau8299 (2019).

    Article 

    Google Scholar
     

  • European Fee. Fee Advice of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union L275, 38–40 (2011).

  • Kaegi, R. et al. Artificial TiO2 nanoparticle emission from exterior facades into the aquatic atmosphere. Environ. Pollut. 156, 233–239 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Praetorius, A. et al. Single-particle multi-element fingerprinting (SpMEF) utilizing inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to determine engineered nanoparticles in opposition to the elevated pure background in soils. Environ. Sci. Nano 4, 307–314 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Flores, Ok. et al. Environmental purposes and up to date improvements in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 56, 1–26 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mehrabi, Ok., Gunther, D. & Gundlach-Graham, A. Single-particle ICP-TOFMS with on-line microdroplet calibration for the simultaneous quantification of numerous nanoparticles in complicated matrices. Environ. Sci. Nano 6, 3349–3358 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mehrabi, Ok., Kaegi, R., Gunther, D. & Gundlach-Graham, A. Rising investigator sequence: automated single-nanoparticle quantification and classification: a holistic research of particles into and out of wastewater therapy vegetation in Switzerland. Environ. Sci. Nano 8, 1211–1225 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loosli, F. et al. Sewage spills are a significant supply of titanium dioxide engineered (nano)-particle launch into the atmosphere. Environ. Sci. Nano 6, 763–777 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Nabi, M. M., Erfani, M., Goharian, E. & Baalousha, M. Identification and quantification of anthropogenic nanomaterials in city rain and runoff utilizing single particle-inductively coupled plasma-time of flight-mass spectrometry. Environ. Sci. Nano 9, 714–729 (2022).

    Article 
    CAS 

    Google Scholar
     

  • von der Kammer, F. et al. Evaluation of engineered nanomaterials in complicated matrices (atmosphere and biota): common issues and conceptual case research. Environ. Toxicol. Chem. 31, 32–49 (2012).

    Article 

    Google Scholar
     

  • Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Publicity and potential dangers of engineered nanomaterials within the atmosphere—present data and instructions for the long run. Rev. Geophys. 58, e2020RG000710 (2020).

    Article 

    Google Scholar
     

  • Bland, G. D., Battifarano, M., Pradas del Actual, A. E., Sarret, G. & Lowry, G. V. Distinguishing engineered TiO2 nanomaterials from pure Ti nanomaterials in soil utilizing SpICP-TOFMS and machine studying. Environ. Sci. Technol. 56, 2990–3001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D. & Biswas, P. Assessing the dangers of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for various areas. Environ. Sci. Technol. 43, 9216–9222 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. World life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).

    Article 

    Google Scholar
     

  • Track, R., Qin, Y., Suh, S. & Keller, A. A. Dynamic mannequin for the shares and launch flows of engineered nanomaterials. Environ. Sci. Technol. 51, 12424–12433 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Solar, T. Y. et al. Envisioning nano launch dynamics in a altering world: utilizing dynamic probabilistic modeling to evaluate future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Giese, B. et al. Dangers, launch and concentrations of engineered nanomaterial within the atmosphere. Sci. Rep. 8, 1565 (2018).

    Article 

    Google Scholar
     

  • Solar, T. Y., Bornhöft, N. A., Hungerbühler, Ok. & Nowack, B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y., Mutzner, L., Ort, C., Kaegi, R. & Gottschalk, F. Modelling engineered nanomaterials in wet-weather discharges. NanoImpact 16, 100188 (2019).

    Article 

    Google Scholar
     

  • European Analysis Mission: GUIDEnano. https://www.guidenano.eu/ (accessed 18 October 2022).

  • European Analysis Mission (H2020): GRACIOUS. https://cordis.europa.eu/venture/id/760840/de (accessed 18 October 2022).

  • European Analysis Mission (8FP7): ENPRA. https://cordis.europa.eu/venture/id/228789/de (accessed 18 October 2022).

  • European Analysis Mission (H2020): RiskGONE. https://riskgone.wp.nilu.no/ (accessed 19 December 2022).

  • Isigonis, P. et al. Danger governance of nanomaterials: assessment of standards and instruments for threat communication, analysis, and mitigation. Nanomaterials (Basel) 9, 696 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Learn, S. A. Ok., Kass, G. S., Sutcliffe, H. R. & Hankin, S. M. Foresight research on the chance governance of latest applied sciences: the case of nanotechnology. Danger Anal. 36, 1006–1024 (2016).

    Article 

    Google Scholar
     

  • Walser, T. et al. Publicity to engineered nanoparticles: mannequin and measurements for accident conditions in laboratories. Sci. Complete Environ. 420, 119–126 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nowack, B., Mueller, N. C., Krug, H. F. & Wick, P. How one can take into account engineered nanomaterials in main accident rules. Environ. Sci. Eur. 26, 2 (2014).

    Article 

    Google Scholar
     

  • Kim, Ok. H., Kim, J. B., Ji, J. H., Lee, S. B. & Bae, G. N. Nanoparticle formation in a chemical storage room as a brand new incidental nanoaerosol supply at a nanomaterial office. J. Hazard. Mater. 298, 36–45 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pilou, M. et al. Modeling of occupational publicity to by chance launched manufactured nanomaterials in a manufacturing facility and calculation of inner doses by inhalation. Int. J. Occup. Environ. Well being 22, 249–258 (2016).

    Article 

    Google Scholar
     

  • Delvosalle, C., Fiévez, C. & Pipart, A. ARAMIS venture: reference accident situations definition in Seveso institution. J. Danger Res. 9, 583–600 (2006).

    Article 

    Google Scholar
     

  • Debray, B. et al. in Probabilistic Security Evaluation and Administration (eds Spitzer, C. et al.) 358–363 (Springer, 2004); https://doi.org/10.1007/978-0-85729-410-4_58

  • Tixier, J., Dusserre, G., Salvi, O. & Gaston, D. Assessment of 62 threat evaluation methodologies of commercial vegetation. J. Loss Prev. Course of Ind. 15, 291–303 (2002).

    Article 

    Google Scholar
     

  • Khan, F., Rathnayaka, S. & Ahmed, S. Strategies and fashions in course of security and threat administration: previous, current and future. Course of Saf. Environ. Prot. 98, 116–147 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bottomley, P. D. W. et al. Extreme accident analysis on the Transuranium Institute Karlsruhe: a assessment of previous expertise and its utility to future challenges. Ann. Nucl. Power 65, 345–356 (2014).

    Article 
    CAS 

    Google Scholar
     

  • ARIA. La référence du retour d’expérience sur accidents technologiques. https://www.aria.developpement-durable.gouv.fr/ (accessed 18 October 2022).

  • Debray, B., Lacome, J.-M., Vignes, A., Gottschalk, F. Catalogue of Potential Unintentional Releases and Unintentional Launch Mannequin NanoFASE Mission Deliverable D4.4 (NanoFASE, 2019); http://nanofase.eu/paperwork/experiences

  • Security of Nuclear Energy Reactors (Mild Water-Cooled) and Associated Amenities WASH-1250 (US Atomic Power Fee, 1973).

  • Ha-Duong, M. & Journé, V. Calculating nuclear accident chances from empirical frequencies. Environ. Syst. Decis. 34, 249–258 (2014).

    Article 

    Google Scholar
     

  • Hendren, C. O. et al. Bridging nanoEHS analysis efforts. NanoEHS Scrimmage. US–EU.org (2016); https://us-eu.org/wp-content/uploads/2016/06/Hendren_Scrimmage_Intro_V3.pdf

  • Maynard, A. D. & Aitken, R. J. ‘Protected dealing with of nanotechnology’ ten years on. Nat. Nanotech 11, 998–1000 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Syberg, Ok. & Hansen, S. F. Environmental threat evaluation of chemical compounds and nanomaterials—the very best basis for regulatory decision-making? Sci. Complete Environ. 541, 784–794 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Krug, H. F. Nanosafety analysis—are we heading in the right direction? Angew. Chem. Int. Ed. 53, 12304–12319 (2014).

    CAS 

    Google Scholar
     

  • Déclaration des substances à l’état nanoparticulaire. R-Nano.fr https://www.r-nano.fr/ (accessed 18 October 2022).

  • Dangers. Lloyd’s Rising Dangers Crew Report (Lloyd’s, 2007).

  • R: A Language and Surroundings for Statistical Computing (R Core Crew, 2018).



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments