Saturday, November 12, 2022
HomeNanotechnologyPowerful-interface-enabled stretchable electronics utilizing non-stretchable polymer semiconductors and conductors

Powerful-interface-enabled stretchable electronics utilizing non-stretchable polymer semiconductors and conductors


  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, A. et al. Irritation-free, gas-permeable, light-weight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J., Tok, J. B. H. & Bao, Z. Self-healing smooth electronics. Nat. Electron. 2, 144–150 (2019).

    Article 

    Google Scholar
     

  • Park, S. et al. Self-powered ultra-flexible electronics through nano-grating-patterned natural photovoltaics. Nature 561, 516–521 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, S. & Bauer, S. Supplies for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article 

    Google Scholar
     

  • Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic digital pores and skin. Nat. Mater. 15, 937–950 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. et al. Ultrasoft electronics to watch dynamically pulsing cardiomyocytes. Nat. Nanotechnol 14, 156–160 (2018).

    Article 

    Google Scholar
     

  • Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Pores and skin-inspired electronics: an rising paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Pores and skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. C. et al. Digital pores and skin: current progress and future prospects for pores and skin‐attachable units for well being monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D.-H. et al. Stretchable and foldable silicon built-in circuits. Science 320, 507–511 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of natural semiconductors for stretchable, extremely versatile, and mechanically strong electronics. Chem. Rev. 117, 6467–6499 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for natural transistors. Nature 539, 411–415 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mun, J. et al. Impact of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. An intrinsically stretchable excessive‐efficiency polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: present progress and future instructions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Extremely stretchable polymer semiconductor movies via the nanoconfinement impact. Science 355, 59–64 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Suo, Z., Vlassak, J. & Wagner, S. Micromechanics of macroelectronics. China Particuol. 3, 321–328 (2005).

    Article 

    Google Scholar
     

  • Xiang, Y., Li, T., Suo, Z. & Vlassak, J. J. Excessive ductility of a metallic movie adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).

    Article 

    Google Scholar
     

  • Lu, N., Wang, X., Suo, Z. & Vlassak, J. Steel movies on polymer substrates stretched past 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article 

    Google Scholar
     

  • Lee, S.-Y. et al. Selective crack suppression throughout deformation in metallic movies on polymer substrates utilizing electron beam irradiation. Nat. Commun. 10, 4454 (2019).

    Article 

    Google Scholar
     

  • Yang, J., Bai, R. & Suo, Z. Topological adhesion of moist supplies. Adv. Mater. 30, 1800671 (2018).

    Article 

    Google Scholar
     

  • Liu, Q., Nian, G., Yang, C., Qu, S. & Suo, Z. Bonding dissimilar polymer networks in varied manufacturing processes. Nat. Commun. 9, 846 (2018).

    Article 

    Google Scholar
     

  • Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Powerful bonding of hydrogels to various non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Pores and skin-inspired hydrogel–elastomer hybrids with strong interfaces and purposeful microstructures. Nat. Commun. 7, 12028 (2016).

    Article 

    Google Scholar
     

  • Wang, G. N. et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem. Mater. 31, 6465–6475 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H., Lee, B. P. & Messersmith, P. B. A reversible moist/dry adhesive impressed by mussels and geckos. Nature 448, 338–341 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. et al. Powerful and water-insensitive self-healing elastomer for strong digital pores and skin. Adv. Mater. 30, 1706846 (2018).

    Article 

    Google Scholar
     

  • Solar, J. Y. et al. Inorganic islands on a extremely stretchable polyimide substrate. J. Mater. Res. 24, 3338–3342 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Immediately probing the fracture habits of ultrathin polymeric movies. ACS Polym. Au 1, 16–29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. A extremely stretchable, clear, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article 

    Google Scholar
     

  • Ambrico, J. M. & Begley, M. R. The function of preliminary flaw dimension, elastic compliance and plasticity in channel cracking of skinny movies. Skinny Stable Movies 419, 144–153 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Beuth, J. L. & Klingbeil, N. W. Cracking of skinny movies bonded to elastic plastic substrates. J. Mech. Phys. Solids 44, 1411–1428 (1996).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments