Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Miyamoto, A. et al. Irritation-free, gas-permeable, light-weight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).
Kang, J., Tok, J. B. H. & Bao, Z. Self-healing smooth electronics. Nat. Electron. 2, 144–150 (2019).
Park, S. et al. Self-powered ultra-flexible electronics through nano-grating-patterned natural photovoltaics. Nature 561, 516–521 (2018).
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
Wagner, S. & Bauer, S. Supplies for stretchable electronics. MRS Bull. 37, 207–213 (2012).
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic digital pores and skin. Nat. Mater. 15, 937–950 (2016).
Lee, S. et al. Ultrasoft electronics to watch dynamically pulsing cardiomyocytes. Nat. Nanotechnol 14, 156–160 (2018).
Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Pores and skin-inspired electronics: an rising paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).
Wang, S. et al. Pores and skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
Yang, J. C. et al. Digital pores and skin: current progress and future prospects for pores and skin‐attachable units for well being monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).
Kim, D.-H. et al. Stretchable and foldable silicon built-in circuits. Science 320, 507–511 (2008).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of natural semiconductors for stretchable, extremely versatile, and mechanically strong electronics. Chem. Rev. 117, 6467–6499 (2017).
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for natural transistors. Nature 539, 411–415 (2016).
Mun, J. et al. Impact of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).
Zheng, Y. et al. An intrinsically stretchable excessive‐efficiency polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).
Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: present progress and future instructions. J. Am. Chem. Soc. 144, 4699–4715 (2022).
Xu, J. et al. Extremely stretchable polymer semiconductor movies via the nanoconfinement impact. Science 355, 59–64 (2017).
Suo, Z., Vlassak, J. & Wagner, S. Micromechanics of macroelectronics. China Particuol. 3, 321–328 (2005).
Xiang, Y., Li, T., Suo, Z. & Vlassak, J. J. Excessive ductility of a metallic movie adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).
Lu, N., Wang, X., Suo, Z. & Vlassak, J. Steel movies on polymer substrates stretched past 50%. Appl. Phys. Lett. 91, 221909 (2007).
Lee, S.-Y. et al. Selective crack suppression throughout deformation in metallic movies on polymer substrates utilizing electron beam irradiation. Nat. Commun. 10, 4454 (2019).
Yang, J., Bai, R. & Suo, Z. Topological adhesion of moist supplies. Adv. Mater. 30, 1800671 (2018).
Liu, Q., Nian, G., Yang, C., Qu, S. & Suo, Z. Bonding dissimilar polymer networks in varied manufacturing processes. Nat. Commun. 9, 846 (2018).
Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Powerful bonding of hydrogels to various non-porous surfaces. Nat. Mater. 15, 190–196 (2016).
Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Pores and skin-inspired hydrogel–elastomer hybrids with strong interfaces and purposeful microstructures. Nat. Commun. 7, 12028 (2016).
Wang, G. N. et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem. Mater. 31, 6465–6475 (2019).
Lee, H., Lee, B. P. & Messersmith, P. B. A reversible moist/dry adhesive impressed by mussels and geckos. Nature 448, 338–341 (2007).
Kang, J. et al. Powerful and water-insensitive self-healing elastomer for strong digital pores and skin. Adv. Mater. 30, 1706846 (2018).
Solar, J. Y. et al. Inorganic islands on a extremely stretchable polyimide substrate. J. Mater. Res. 24, 3338–3342 (2009).
Zhang, S. et al. Immediately probing the fracture habits of ultrathin polymeric movies. ACS Polym. Au 1, 16–29 (2021).
Wang, Y. et al. A extremely stretchable, clear, and conductive polymer. Sci. Adv. 3, e1602076 (2017).
Ambrico, J. M. & Begley, M. R. The function of preliminary flaw dimension, elastic compliance and plasticity in channel cracking of skinny movies. Skinny Stable Movies 419, 144–153 (2002).
Beuth, J. L. & Klingbeil, N. W. Cracking of skinny movies bonded to elastic plastic substrates. J. Mech. Phys. Solids 44, 1411–1428 (1996).