Sönmez M, Ficai D, Ficai A, Alexandrescu L, Georgescu M, Trusca R, Gurau D, Titu MA, Andronescu E. Functions of mesoporous silica in biosensing and managed launch of insulin. Int J Pharm. 2018;549(1–2):179–200.
Adler A, Bennett P, Colagiuri Chair S, Gregg E, Narayan KMV, Ines Schmidt M, Sobngwi E, Tajima N, Tandon N, Unwin N, et al. Reprint of: classification of diabetes mellitus. Diabetes Res Clin Pract. 2021;31:108972–108972.
Ouyang J, Zhang Z, Deng B, Liu J, Wang L, Liu H, Koo S, Chen S, Li Y, Yaremenko AV, et al. Oral drug supply platforms for biomedical purposes. Mater In the present day. 2023;62:296–326.
Zaiki Y, Lim LY, Wong TW. Important materials designs for mucus- and mucosa-penetrating oral insulin nanoparticle improvement. Int Mater. 2022;68(2):121–39.
Cao J, Li X, Tian H. Metallic-organic framework (MOF)-based drug supply. Curr Prime Med Chem. 2020;27:5949–69.
Zhao S, Huang C, Yue X, Li X, Zhou P, Wu A, Chen C, Qu Y, Zhang C. Software advance of electrosprayed micro/nanoparticles primarily based on man-made or natural polymers for drug supply system. Mater Des. 2022;220:110850.
Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin supply: present limitations and present counter-strategies. J Pharm Pharmacol. 2018;70(2):197–213.
Gowthamarajan Ok, Kulkarni GT. Oral insulin: truth or fiction? Resonance. 2003;8:38–46.
Jakoby J, Beuschlein F, Mentz S, Hantel C, Süss R. Liposomal doxorubicin for lively concentrating on: floor modification of the nanocarrier evaluated in vitro and in vivo-challenges and prospects. Oncotarget. 2015;6(41):43698–711.
Mudassir J, Darwis Y, Muhamad S, Khan AA. Self-assembled insulin and nanogels polyelectrolyte complicated (Ins/NGs-PEC) for oral insulin supply: characterization, lyophilization and in-vivo analysis. Int J Nanomed. 2019;14:4895–909.
Zhang Y, Xiong GM, Ali Y, Boehm BO, Huang YY, Venkatraman S. Layer-by-layer coated nanoliposomes for oral supply of insulin. Nanoscale. 2021;13(2):776–89.
Vidal F, Guzman L. Dendrimer nanocarriers drug motion: perspective for neuronal pharmacology. Neural Regen Res. 2015;10(7):1029–31.
da Silva SS, Igne Ferreira E, Giarolla J. Dendrimer prodrugs. Molecules. 2016;21(6):686.
Liu Z, Fan AC, Rakhra Ok, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo most cancers remedy. Angew Chem Int Edit. 2009;48(41):7668–72.
Peretz S, Regev O. Carbon nanotubes as nanocarriers in drugs. Curr Opin Colloid In. 2012;17(6):360–8.
Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Collection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging. 2003;2(1):50–64.
Zhao MX, Zeng EZ, Zhu BJ. The organic purposes of inorganic nanoparticle drug carriers. Chemnanomat. 2015;1(2):82–91.
You J, Zhang G, Li C. Exceptionally excessive payload of doxorubicin in hole gold nanospheres for near-infrared light-triggered drug launch. ACS Nano. 2010;4(2):1033–41.
You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. Photothermal-chemotherapy with doxorubicin-loaded hole gold nanospheres: a platform for near-infrared light-trigged drug launch. J Management Launch. 2012;158(2):319–28.
Butterfield JT, Kim H, Knauer DJ, Nevala WK, Markovic SN. Identification of a peptide-peptide binding motif within the coating of nab-paclitaxel nanoparticles with medical antibodies: bevacizumab, rituximab, and trastuzumab. Sci Rep. 2017;7:14476.
Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-resistant mesoporous metal-organic framework towards oral insulin supply: protein encapsulation, safety, and launch. J Am Chem Soc. 2018;140(17):5678–81.
Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, et al. In vivo oral insulin supply through covalent natural frameworks. Chem Sci. 2021;12(17):6037–47.
Zou JJ, Wei G, Xiong C, Yu Y, Li S, Hu L, Ma S, Tian J. Environment friendly oral insulin supply enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Sci Adv. 2022;8(8):eabm4677.
Asal HA, Shoueir KR, El-Hagrasy MA, Toson EA. Managed synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin supply. Int J Biol Macromol. 2022;209:2188–96.
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug supply. Nat Mater. 2013;12(11):991–1003.
Rizvi SAA, Saleh AM. Functions of nanoparticle programs in drug supply know-how. Saudi Pharm J. 2018;26:64–70.
de Karine Cappuccio C, Josiel Martins C, Maria Gabriela C. Drug-loaded polymeric nanoparticles: a evaluate. Int J Polym Mater. 2022;71:1–13.
Solar H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova Ok, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF diabetes atlas: international, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;204:110945.
Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro analysis of a drug supply system. J Nanopart Res. 2008;11(8):1937–46.
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.
Singh N, Son S, An J, Kim I, Choi M, Kong N, Tao W, Kim JS. Nanoscale porous natural polymers for drug supply and superior most cancers theranostics. Chem Soc Rev. 2021;50(23):12883–96.
Bochicchio S, Dalmoro A, Barba AA, d’Amore M, Lamberti G. New preparative approaches for micro and nano drug supply carriers. Curr Drug Deliv. 2016;14(2):203–15.
Davoodi P, Lee LY, Xu Q, Sunil V, Solar Y, Soh S, Wang CH. Drug supply programs for programmed and on-demand launch. Adv Drug Ship Rev. 2018;132:104–38.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano primarily based drug supply programs: latest developments and future prospects. J Nanobiotechnol. 2018;16:71.
Singh R, Lillard JW. Nanoparticle-based focused drug supply. Exp Mol Pathol. 2009;86(3):215–23.
Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to contemplate in an effort to alter the destiny of nanocarriers after oral supply. Nanomedicine. 2010;5(2):287–306.
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral supply of insulin. J Biomat Sci-Polym E. 2022;33(16):2145–64.
Son GH, Lee BJ, Cho CW. Mechanisms of drug launch from superior drug formulations similar to polymeric-based drug-delivery programs and lipid nanoparticles. J Pharm Investig. 2017;47(4):287–96.
Abdel-Moneim A, Ramadan H. Novel methods to oral supply of insulin: present progress of nanocarriers for diabetes administration. Drug Develop Res. 2021;83(2):301–16.
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug supply gadgets. J Management Launch. 2001;70(1–2):1–20.
Takagi T. An idea of clever supplies. J Intel Mat Syst Str. 1990;1:149–56.
Alarcón CDH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical purposes. Chem Soc Rev. 2005;34(3):276–85.
Mahobia S, Bajpai J, Bajpai AK. Soya protein as doable potential nanocarriers for in-vitro oral supply of insulin in simulated gastric fluids (SGFs). Int J Polym Mater. 2017;67(6):340–50.
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate programs for drug supply. Nat Rev Drug Discov. 2014;13(11):813–27.
Danhier F, Feron O, Préat V. To use the tumor microenvironment: passive and lively tumor concentrating on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148(2):135–6.
Lee ES, Shin HJ, Na Ok, Bae YH. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Management Launch. 2003;90(3):363–74.
Lu C, City MW. Stimuli-responsive polymer nano-science: form anisotropy, responsiveness, purposes. Prog Polym Sci. 2018;78:24–46.
Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for environment friendly and protected oral insulin supply. Int J Biol Macromol. 2015;72:640–8.
Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat Commun. 2022;13(1):6649.
Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromol. 2009;10(5):1212–6.
Sahota T, Tomlins P, Taylor MJ. Lengthy-term stability of glucose responsive dextran methacrylate-concanavalin a methacrylamide gels as a part of an implantable synthetic pancreas. Int J Polym Mater. 2015;64(18):946–54.
Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks primarily based on protein recognition. Macromol Biosci. 2009;9(9):864–8.
Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, Zhu LM. Glucose- and temperature-sensitive nanoparticles for insulin supply. Int J Nanomed. 2017;12:4037–57.
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin supply. Int J Biol Macromol. 2018;123:968–78.
Xu M, Huang J, Jiang S, He J, Wang Z, Qin H, Guan YQ. Glucose delicate konjac glucomannan/concanavalin A nanoparticles as oral insulin supply system. Int J Biol Macromol. 2022;202:296–308.
Yufen X, Zhongmin T, Xiangang H, John J, Wei C, Chuang L, Jun Z, Na Ok, Nitin J, Jianzhong D, et al. Glucose-responsive oral insulin supply platform for one therapy a day in diabetes. Matter. 2021;4(10):3269–85.
Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y. Metallic-organic frameworks for stimuli-responsive drug supply. Biomaterials. 2019;230:119619.
Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. A nanocomposite car primarily based on metal-organic framework nanoparticle integrated biodegradable microspheres for enhanced oral insulin supply. ACS Appl Mater Interfaces. 2020;12(20):22581–92.
Alibolandi M, Alabdollah F, Sadeghi F, Mohammadi M, Abnous Ok, Ramezani M, Hadizadeh F. Dextran-b-poly(lactide-co-glycolide) polymersome for oral supply of insulin: in vitro and in vivo analysis. J Management Launch. 2016;227:58–70.
Mahkam M. Starch-based polymeric carriers for oral-insulin supply. J Biomed Mater Res A. 2009;92A(4):1392–7.
Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin supply. Carbohyd Polym. 2020;246:116617.
Inchaurraga L, Martínez-López AL, Martin-Arbella N, Irache JM. Zein-based nanoparticles for the oral supply of insulin. Drug Deliv Transl Re. 2020;10(6):1601–11.
Bao X, Qian Ok, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles improve the oral absorption and hypoglycemic impact of insulin. J Mater Chem B. 2021;9(31):6234–45.
Andreani T, de Souza ALR, Kiill CP, Lorenzón EN, Fangueiro JF, Calpena AC, Chaud MV, Garcia ML, Gremião MPD, Silva AM, et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin supply. Int J Pharm. 2014;473(1–2):627–35.
Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. Biomed Res Int. 2014;2014:180549.
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on therapy of degenerative ailments. Int Nano Lett. 2017;7(2):91–122.
Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The function of polysaccharides from pure sources to design oral insulin micro- and nanoparticles meant for the therapy of diabetes mellitus: a evaluate. Carbohyd Polym. 2020;256:117504.
Hu Q, Lu Y, Luo Y. Latest advances in dextran-based drug supply programs: from fabrication methods to purposes. Carbohyd Polym. 2021;264:117999.
Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent natural frameworks for biomedical purposes. Adv Healthc Mater. 2021;10(6):2002090.
Li WL, Zheng HC, Bukuru J, De Kimpe N. Pure medicines used within the conventional Chinese language medical system for remedy of diabetes mellitus. J Ethnopharmacol. 2004;92(1):1–21.
Moroz E, Matoori S, Leroux JC. Oral supply of macromolecular medication: the place we’re after nearly 100 years of makes an attempt. Adv Drug Deliv Rev. 2016;101:108–21.
Compart J, Li X, Fettke J. Starch-A posh and undeciphered biopolymer. J Plant Physiol. 2021;258:153389.
Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and biomedical purposes of native and modified starch: a evaluate. Starke. 2020;72(7–8):1900270.
Zhu F. Relationships between amylopectin inner molecular construction and physicochemical properties of starch. Developments Meals Sci Tech. 2018;78:234–42.
Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Structural modifications and methods for native starch for purposes in superior drug supply. Biomed Res Int. 2022;2022:2188940.
Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Appl Surf Sci. 2020;502:144282.
Qiu A, Wang Y, Zhang G, Wang H. Pure polysaccharide-based nanodrug supply programs for therapy of diabetes. Polymers. 2022;14(15):3217.
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in bioactive polysaccharide-derivatives: a evaluate. Meals Rev Int. 2021;39(3):1612–27.
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An summary of chitosan nanoparticles and its software in non-parenteral drug supply. Pharmaceutics. 2017;9(4):53–79.
Methods TMM, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for software in mucoadhesive drug supply programs. Polymers. 2018;10(3):267–304.
Shingel KI. Present information on biosynthesis, organic exercise, and chemical modification of the exopolysaccharide, pullulan. Carbohyd Res. 2004;339(3):447–60.
Varanko A, Saha S, Chilkoti A. Latest traits in protein and peptide-based biomaterials for superior drug supply. Adv Drug Deliv Rev. 2020;156:133–87.
Ferroni C, Varchi G. Keratin-based nanoparticles as drug supply carriers. Appl Sci. 2021;11(20):9417.
Chaitanya Reddy C, Khilji IA, Gupta A, Bhuyar P, Mahmood S, Saeed Al-Japairai KA, Chua GK. Valorization of keratin waste biomass and its potential purposes. J Water Course of Eng. 2021;40:101707.
Kunjiappan S, Theivendren P, Pavadai P, Govindaraj S, Sankaranarayanan M, Somasundaram B, Arunachalam S, Ram Kumar Pandian S, Ammunje DN. Design and in silico modeling of indoloquinoxaline integrated keratin nanoparticles for modulation of glucose metabolism in 3T3-L1 adipocytes. Biotechnol Progr. 2019;36(1):1–14.
Banerjee D, Flanagan PR, Cluett J, Valberg LS. Transferrin receptors within the human gastrointestinal-tract-relationship to physique iron shops. Gastroenterology. 1986;91(4):861–9.
Xia CQ, Wang J, Shen WC. Hypoglycemic impact of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2000;295(2):594–600.
Kavimandan NJ, Losi E, Peppas NA. Novel supply system primarily based on complexation hydrogels as supply autos for insulin-transferrin conjugates. Biomaterials. 2006;27(20):3846–54.
Zhu X, Wu J, Shan W, Tao W, Zhao L, Lim J-M, D’Ortenzio M, Karnik R, Huang Y, Shi J, et al. Polymeric nanoparticles amenable to simultaneous set up of exterior concentrating on and inside therapeutic proteins. Angew Chemie. 2016;55(10):3309–12.
Ouyang J, Deng B, Zou B, Li Y, Bu Q, Tian Y, Chen M, Chen W, Kong N, Chen T, et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J Am Chem Soc. 2023;145(22):12193–205.
Wu D, Xu F, Solar B, Fu R, He H, Matyjaszewski Ok. Design and preparation of porous polymers. Chem Rev. 2012;112(7):3959–4015.
Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug supply programs. Nat Rev Chem. 2017;1(8):63–80.
Zhang X, Diao P, Yokoyama H, Inoue Y, Tanabe Ok, Wang X, Hayashi C, Yokoyama T, Zhang Z, Hu X, et al. Acidic activated charcoal prevents weight problems and insulin resistance in high-fat diet-fed mice. Entrance Nutr. 2022;9:1–16.
Huber M, Pohl W, Reinisch G, Attems J, Pescosta S, Lintner F. Lung illness 35 years after aspiration of activated charcoal together with pulmonary lymphangioleiomyomatosis: a histological and clinicopathological examine with scanning electron microscopic analysis and ingredient evaluation. Virchows Arch. 2006;449(2):225–9.
Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, et al. Silica nanoparticles on the oral supply of insulin. Professional Opin Drug Del. 2018;15(8):805–20.
Juere E, Caillard R, Marko D, Del Favero G, Kleitz F. Sensible protein-based formulation of dendritic mesoporous silica nanoparticles: towards oral supply of insulin. Chem-Eur J. 2020;26(23):5195–9.
Qian BB, et al. Porous coordination polymers: improvement and analysis progress. Sci China Chem. 2019;49:212837231.
Zhao J, Yang Y, Han X, Liang C, Liu J, Tune X, Ge Z, Liu Z. Redox-sensitive nanoscale coordination polymers for drug supply and most cancers theranostics. ACS Appl Mater Interfaces. 2017;9(28):23555–63.
Zhao Y, Deng DS, Ma LF, Ji BM, Wang LY. A brand new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of beta-ketoesters. Chem Commun. 2013;49(87):10299–301.
Shen X, Pan Y, Solar Z, Liu D, Xu H, Yu Q, Trivedi M, Kumar A, Chen J, Liu J. Design of metal-organic frameworks for pH-responsive drug supply software. Mini-Rev Med Chem. 2019;19(20):1644–65.
Cai H, Huang YL, Li D. Organic metal-organic frameworks: buildings, host-guest chemistry and bio-applications. Coordin Chem Rev. 2017;378:207–21.
Fu HR, Wang N, Qin JH, Han ML, Ma LF, Wang F. Spatial confinement of a cationic MOF: a SC-SC method for top capability Cr (vi)-oxyanion seize in aqueous resolution. Chem Commun. 2018;54(82):11645–8.
Yang X, Yuan S, Zou L, Drake H, Zhang Y, Qin J, Alsalme A, Zhou HC. One-step synthesis of hybrid core-shell metal-organic frameworks. Angew Chem Int Edit. 2018;57(15):3927–32.
Guan HY, LeBlanc RJ, Xie SY, Yue Y. Latest progress within the syntheses of mesoporous metal-organic framework supplies. Coordin Chem Rev. 2018;369:76–90.
Solar Z, Wu S, Ma J, Shi H, Wang L, Sheng A, Yin T, Solar L, Li G. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles. ACS Appl Mater Interfaces. 2019;11(40):36316–23.
Rohra N, Gaikwad G, Dandekar P, Jain R. Microfluidic Synthesis of a bioactive metal-organic framework for glucose-responsive insulin supply. ACS Appl Mater Interfaces. 2022;14(6):8251–65.
Mal A, Ding H, Li M, Li W, Wang C. Covalent natural frameworks with nanopores for organic purposes: a evaluate. ACS Appl Nano Mater. 2022;5(10):13972–84.
Wang H, Zhu W, Feng L, Chen Q, Chao Y, Dong Z, Liu Z. Nanoscale covalent natural polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic remedy of most cancers. Nano Res. 2017;11(6):3244–57.
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Tune W. Porous natural polymers for drug supply: hierarchical pore buildings, variable morphologies, and organic properties. Biomater Sci. 2022;10(19):5369–90.
Singh Y, Meher JG, Raval Ok, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: ideas, improvement and purposes in drug supply. J Management Launch. 2017;252:28–49.
Li H, Ding J, Guan X, Chen F, Li C, Zhu L, Xue M, Yuan D, Valtchev V, Yan Y, et al. Three-dimensional large-pore covalent natural framework with stp topology. J Am Chem Soc. 2020;142(31):13334–8.
Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH, Zhang W. Ionic covalent natural frameworks with spiroborate linkage. Angew Chem. 2015;55(5):1737–41.
Park Ok, Lee Ok, Kim H, Ganesan V, Cho Ok, Jeong SK, Yoon S. Preparation of covalent triazine frameworks with imidazolium cations embedded in fundamental websites and their software for CO2 seize. J Mater Chem A. 2017;5(18):8576–82.
Cheng Y, Zhai L, Tong M, Kundu T, Liu G, Ying Y, Dong J, Wang Y, Zhao D. Selective fuel permeation in blended matrix membranes accelerated by hole ionic covalent natural polymers. ACS Maintain Chem Eng. 2018;7(1):1564–73.
Maurya M, Singh JK. Impact of ionic liquid impregnation in extremely water-stable metal-organic frameworks, covalent natural frameworks, and carbon-based adsorbents for post-combustion flue fuel therapy. Vitality Fuels. 2019;33:3421–8.
Ying Y, Tong M, Ning S, Ravi SK, Peh SB, Tan SC, Pennycook SJ, Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent natural nanosheets with decreased apertures for fuel separation. J Am Chem Soc. 2020;142(9):4472–80.
van der Jagt R, Vasileiadis A, Veldhuizen H, Shao P, Feng X, Ganapathy S, Habisreutinger NC, van der Veen MA, Wang C, Wagemaker M, et al. Synthesis and structure-property relationships of polyimide covalent natural frameworks for carbon dioxide seize and (aqueous) sodium-ion batteries. Chem Mater. 2021;33(3):818–33.
Jin F, Lin E, Wang T, Geng S, Wang T, Liu W, Xiong F, Wang Z, Chen Y, Cheng P, et al. Backside-up synthesis of 8-connected three-dimensional covalent natural frameworks for extremely environment friendly ethylene/ethane separation. J Am Chem Soc. 2022;144(12):5643–52.
Wu Y, Xu H, Chen X, Gao J, Jiang D. A π-electronic covalent natural framework catalyst: π-walls as catalytic beds for Diels-Alder reactions beneath ambient situations. Chem Commun. 2015;51(50):10096–8.
Liu M, Jiang Ok, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, et al. Controlling monomer feeding charge to realize extremely crystalline covalent triazine frameworks. Adv Mater. 2019;31(19):1–7.
Mal A, Mishra RK, Praveen VK, Khayum MA, Banerjee R, Ajayaghosh A. Supramolecular reassembly of self-exfoliated ionic covalent natural nanosheets for label-free detection of double-stranded DNA. Angew Chem Int Edit. 2018;57(28):8443–7.
Zuo H, Li Y, Liao Y. Europium ionic liquid grafted covalent natural framework with twin luminescence emissions as delicate and selective acetone sensor. ACS Appl Mater Interfaces. 2019;11(42):39201–8.
Singh H, Devi M, Jena N, Iqbal MM, Nailwal Y, De Sarkar A, Pal SK. Proton-triggered fluorescence switching in self-exfoliated ionic covalent natural nanosheets for purposes in selective detection of anions. ACS Appl Mater Interfaces. 2020;12(11):13248–55.
Jiang W, Zhao Y, Zhang D, Zhu X, Liu H, Solar B. Environment friendly and strong twin modes of fluorescence sensing and smartphone readout for the detection of pyrethroids utilizing synthetic receptors sure inside a covalent natural framework. Biosens Bioelectron. 2021;194:113582.
Zhao L, Liang X, Ni Z, Zhao H, Ge B, Li W. Covalent natural framework modified polyacrylamide electrospun nanofiber membrane as a “turn-on” fluorescent sensor for major aliphatic amine fuel. Sensor Actuat B-Chem. 2022;366:131988.
Liu L, Yin L, Cheng D, Zhao S, Zang HY, Zhang N, Zhu G. Floor-mediated development of an ultrathin free-standing covalent natural framework membrane for environment friendly proton conduction. Angew Chem Int Edit. 2021;60(27):14875–80.
Wang X, Shi B, Yang H, Guan J, Liang X, Fan C, You X, Wang Y, Zhang Z, Wu H, et al. Assembling covalent natural framework membranes with superior ion change capability. Nat Commun. 2022;13(1):1020–9.
Liang X, Tian Y, Yuan Y, Kim Y. Ionic covalent natural frameworks for power gadgets. Adv Mater. 2021;33(52):2105647.
Zou J, Fan Ok, Chen Y, Hu W, Wang C. Views of ionic covalent natural frameworks for rechargeable batteries. Coordin Chem Rev. 2022;458:214431.
Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. 3D porous crystalline polyimide covalent natural frameworks for drug supply. J Am Chem Soc. 2015;137(26):8352–5.
Zhang G, Ji Y, Li X, Wang X, Tune M, Gou H, Gao S, Jia X. Polymer-covalent natural frameworks composites for glucose and pH dual-responsive insulin supply in mice. Adv Healthc Mater. 2020;9(14):2000221.
Ghosh P, Banerjee P. Drug supply utilizing biocompatible covalent natural frameworks (COFs) in the direction of a therapeutic method. Chem Commun. 2023;59(84):12527–47.
Zhao Y, Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Wen D, Zhu W, Ben T, Negishi Y. Report ultralarge-pores, low density three-dimensional covalent natural framework for managed drug supply. Angew Chem Int Edit. 2023;62(13):e202300172.
Ge L, Qiao C, Tang Y, Zhang X, Jiang X. Gentle-activated hypoxia-sensitive covalent natural framework for tandem-responsive drug supply. Nano Lett. 2021;21(7):3218–24.
Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. Three-dimensional covalent natural framework with scu-c topology for drug supply br. ACS Appl Mater Interfaces. 2022;14(42):48045–51.
Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. 8-Hydroxyquinoline functionalized covalent natural framework as a pH delicate provider for drug supply. Mat Sci Eng C-Mater. 2020;117:111243.
Zhao Ok, Gong P, Tune S, Li J, Peng J, Wang Y, Qi C, Wang D, Liu Z. Dimension-controllable covalent natural frameworks with excessive NIR absorption for focused supply of glucose oxidase. J Mol Liq. 2022;346:117896.
Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent natural frameworks. Science. 2005;310(5751):1166–70.
Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent natural frameworks: a great platform for designing ordered supplies and superior purposes. Chem Soc Rev. 2020;50(1):120–242.
de la Pena RA, Rodriguez-San-Miguel D, Stylianou KC, Cavallini M, Gentili D, Liscio F, Milita S, Maria Roscioni O, Luisa Ruiz-Gonzalez M, Carbonell C, et al. Direct on-surface patterning of a crystalline laminar covalent natural framework synthesized at room temperature. Chem-Eur J. 2015;21(30):10666–70.
Guan X, Ma Y, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Quick, ambient temperature and stress ionothermal synthesis of three-dimensional covalent natural frameworks. J Am Chem Soc. 2018;140(13):4494–8.
Zhao W, Yu C, Zhao J, Chen F, Guan X, Li H, Tang B, Yu G, Valtchev V, Yan Y, et al. 3D Hydrazone-functionalized covalent natural frameworks as pH-triggered rotary switches. Small. 2021;17(41):202102630.
Zou J, Ren X, Tan L, Huang Z, Gou L, Meng X. Preparation and properties of covalent natural framework nanoparticles with excessive drug loading. Entrance Mater Sci. 2021;15(3):465–70.
Wang Y, Solar X, Wang Y. Synthesis of pH-responsive covalent natural frameworks nanocarrier for plumbagin supply. Rsc Adv. 2022;12(25):16046–50.
Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y. Nanoscale covalent natural frameworks as good carriers for drug supply. Chem Commun. 2016;52(22):4128–31.
Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV. Exploiting noncovalent interactions in an imine-based covalent natural framework for quercetin supply. Adv Mater. 2016;28(39):8749–54.
Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath Ok, Díaz Díaz D, Banerjee R. Focused drug supply in covalent natural nanosheets (CONs) through sequential postsynthesis. J Am Chem Soc. 2017;139(12):4513–20.
Zhang G, Li X, Liao Q, Liu Y, Xi Ok, Huang W, Jia X. Water-dispersible PEG-curcumin/amine-functionalized covalent natural framework nanocomposites as good carriers for in vivo drug supply. Nat Commun. 2018;9:2785.
Wang H, Zhu W, Liu J, Dong Z, Liu Z. pH-responsive nanoscale covalent natural polymers as a biodegradable drug provider for mixed photodynamic-chemotherapy of most cancers. ACS Appl Mater Interfaces. 2018;10(17):14475–82.
Liu S, Yang J, Guo R, Deng L, Dong A, Zhang J. Facile fabrication of redox-responsive covalent natural framework nanocarriers for effectively loading and delivering doxorubicin. Macromol Speedy Comm. 2020;41(4):1–6.
Anbazhagan R, Krishnamoorthi R, Kumaresan S, Tsai H-C. Thioether-terminated triazole-bridged covalent natural framework for dual-sensitive drug supply software. Mater Sci Eng C. 2021;120:111704.
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Preparation and characterization of insulin-loaded zein/carboxymethylated short-chain amylose complicated nanoparticles. J Agric Meals Chem. 2018;66(35):9335–43.
Chen Y, Tune H, Huang Ok, Guan X. Novel porous starch/alginate hydrogels for managed insulin launch with twin response to pH and amylase. Meals Funct. 2021;12(19):9165–77.
Li S, Liang N, Yan P, Kawashima Y, Solar S. Inclusion complicated primarily based on n-acetyl-l-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin supply. Carbohyd Polym. 2020;252:117202.
Liu C, Xu H, Solar Y, Zhang X, Cheng H, Mao S. Design of virus-mimicking polyelectrolyte complexes for enhanced oral insulin supply. J Pharm Sci. 2019;108(10):3408–15.
Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral supply of insulin. Mol Pharm. 2019;17(1):239–50.
Shirzadian T, Nourbakhsh MS, Fattahi A, Bahrami G, Mohammadi G. Characterization and optimization of de-esterified tragacanth-chitosan nanocomposite as a possible provider for oral supply of insulin: in vitro and ex vivo research. J Biomed Mater Res A. 2021;109(11):2164–72.
Wu J, Chen L, Zhang X, Xu C, Liu J, Gu J, Ji H, Feng X, Yan C, Tune X. A core-shell insulin/CS-PLGA nanoparticle for enhancement of oral insulin bioavailability: in vitro and in vivo examine. Int J Polym Mater. 2022;72(8):656–64.
Verma A, Sharma S, Gupta PK, Singh A, Teja BV, Dwivedi P, Gupta GK, Trivedi R, Mishra PR. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive provider for improved oral supply of insulin. Acta Biomater. 2015;31:288–300.
Wu H, Guo T, Nan J, Yang L, Liao G, Park HJ, Li J. Hyaluronic-acid-coated chitosan nanoparticles for insulin oral supply: fabrication, characterization, and hypoglycemic capacity. Macromol Biosci. 2022;22(7):2100493.
Zhang YW, Tu LL, Tang Z, Wang Q, Zheng GL, Yin LN. pH-sensitive chitosan-deoxycholic acid/alginate nanoparticles for oral insulin supply. Pharm Dev Technol. 2021;26(9):943–52.
Xu Z, Chen L, Duan X, Li X, Ren H. Microparticles primarily based on alginate/chitosan/casein three-dimensional system for oral insulin supply. Polym Advan Technol. 2021;32(11):4352–61.
Tian H, He Z, Solar C, Yang C, Zhao P, Liu L, Leong KW, Mao H-Q, Liu Z, Chen Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to reinforce oral supply of insulin. Adv Healthc Mater. 2018;7(17):1800285.
Xie Y, Jiang S, Xia F, Hu X, He H, Yin Z, Qi J, Lu Y, Wu W. Glucan microparticles thickened with thermosensitive gels as potential carriers for oral supply of insulin. J Mater Chem B. 2016;4(22):4040–8.
Reboredo C, Gonzalez-Navarro CJ, Martinez-Lopez AL, Martinez-Oharriz C, Sarmento B, Irache JM. Zein-based nanoparticles as oral carriers for insulin supply. Pharmaceutics. 2021;14(1):39.
Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang J-H, Wang S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal limitations. J Colloid Interf Sci. 2020;582:364–75.
Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S. One-pot synthesis of a metal-organic framework-based drug provider for clever glucose-responsive insulin supply. Chem Commun. 2018;54(42):5377–80.
He M, Yu P, Hu Y, Zhang J, He M, Nie C, Chu X. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles allow intravenous glucose-responsive insulin supply. ACS Appl Mater Interfaces. 2021;13(17):19648–59.