Friday, January 5, 2024
HomeNanotechnologyPolymeric nanoparticles (PNPs) for oral supply of insulin | Journal of Nanobiotechnology

Polymeric nanoparticles (PNPs) for oral supply of insulin | Journal of Nanobiotechnology


  • Sönmez M, Ficai D, Ficai A, Alexandrescu L, Georgescu M, Trusca R, Gurau D, Titu MA, Andronescu E. Functions of mesoporous silica in biosensing and managed launch of insulin. Int J Pharm. 2018;549(1–2):179–200.

    Article 
    PubMed 

    Google Scholar
     

  • Adler A, Bennett P, Colagiuri Chair S, Gregg E, Narayan KMV, Ines Schmidt M, Sobngwi E, Tajima N, Tandon N, Unwin N, et al. Reprint of: classification of diabetes mellitus. Diabetes Res Clin Pract. 2021;31:108972–108972.

    Article 

    Google Scholar
     

  • Ouyang J, Zhang Z, Deng B, Liu J, Wang L, Liu H, Koo S, Chen S, Li Y, Yaremenko AV, et al. Oral drug supply platforms for biomedical purposes. Mater In the present day. 2023;62:296–326.

    Article 
    CAS 

    Google Scholar
     

  • Zaiki Y, Lim LY, Wong TW. Important materials designs for mucus- and mucosa-penetrating oral insulin nanoparticle improvement. Int Mater. 2022;68(2):121–39.

    Article 

    Google Scholar
     

  • Cao J, Li X, Tian H. Metallic-organic framework (MOF)-based drug supply. Curr Prime Med Chem. 2020;27:5949–69.

    Article 
    CAS 

    Google Scholar
     

  • Zhao S, Huang C, Yue X, Li X, Zhou P, Wu A, Chen C, Qu Y, Zhang C. Software advance of electrosprayed micro/nanoparticles primarily based on man-made or natural polymers for drug supply system. Mater Des. 2022;220:110850.

    Article 
    CAS 

    Google Scholar
     

  • Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin supply: present limitations and present counter-strategies. J Pharm Pharmacol. 2018;70(2):197–213.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gowthamarajan Ok, Kulkarni GT. Oral insulin: truth or fiction? Resonance. 2003;8:38–46.

    Article 
    CAS 

    Google Scholar
     

  • Jakoby J, Beuschlein F, Mentz S, Hantel C, Süss R. Liposomal doxorubicin for lively concentrating on: floor modification of the nanocarrier evaluated in vitro and in vivo-challenges and prospects. Oncotarget. 2015;6(41):43698–711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mudassir J, Darwis Y, Muhamad S, Khan AA. Self-assembled insulin and nanogels polyelectrolyte complicated (Ins/NGs-PEC) for oral insulin supply: characterization, lyophilization and in-vivo analysis. Int J Nanomed. 2019;14:4895–909.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Xiong GM, Ali Y, Boehm BO, Huang YY, Venkatraman S. Layer-by-layer coated nanoliposomes for oral supply of insulin. Nanoscale. 2021;13(2):776–89.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vidal F, Guzman L. Dendrimer nanocarriers drug motion: perspective for neuronal pharmacology. Neural Regen Res. 2015;10(7):1029–31.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • da Silva SS, Igne Ferreira E, Giarolla J. Dendrimer prodrugs. Molecules. 2016;21(6):686.

    Article 

    Google Scholar
     

  • Liu Z, Fan AC, Rakhra Ok, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo most cancers remedy. Angew Chem Int Edit. 2009;48(41):7668–72.

    Article 
    CAS 

    Google Scholar
     

  • Peretz S, Regev O. Carbon nanotubes as nanocarriers in drugs. Curr Opin Colloid In. 2012;17(6):360–8.

    Article 
    CAS 

    Google Scholar
     

  • Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Collection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging. 2003;2(1):50–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao MX, Zeng EZ, Zhu BJ. The organic purposes of inorganic nanoparticle drug carriers. Chemnanomat. 2015;1(2):82–91.

    Article 
    CAS 

    Google Scholar
     

  • You J, Zhang G, Li C. Exceptionally excessive payload of doxorubicin in hole gold nanospheres for near-infrared light-triggered drug launch. ACS Nano. 2010;4(2):1033–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. Photothermal-chemotherapy with doxorubicin-loaded hole gold nanospheres: a platform for near-infrared light-trigged drug launch. J Management Launch. 2012;158(2):319–28.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Butterfield JT, Kim H, Knauer DJ, Nevala WK, Markovic SN. Identification of a peptide-peptide binding motif within the coating of nab-paclitaxel nanoparticles with medical antibodies: bevacizumab, rituximab, and trastuzumab. Sci Rep. 2017;7:14476.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-resistant mesoporous metal-organic framework towards oral insulin supply: protein encapsulation, safety, and launch. J Am Chem Soc. 2018;140(17):5678–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, et al. In vivo oral insulin supply through covalent natural frameworks. Chem Sci. 2021;12(17):6037–47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zou JJ, Wei G, Xiong C, Yu Y, Li S, Hu L, Ma S, Tian J. Environment friendly oral insulin supply enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Sci Adv. 2022;8(8):eabm4677.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Asal HA, Shoueir KR, El-Hagrasy MA, Toson EA. Managed synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin supply. Int J Biol Macromol. 2022;209:2188–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug supply. Nat Mater. 2013;12(11):991–1003.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rizvi SAA, Saleh AM. Functions of nanoparticle programs in drug supply know-how. Saudi Pharm J. 2018;26:64–70.

    Article 
    PubMed 

    Google Scholar
     

  • de Karine Cappuccio C, Josiel Martins C, Maria Gabriela C. Drug-loaded polymeric nanoparticles: a evaluate. Int J Polym Mater. 2022;71:1–13.

    Article 

    Google Scholar
     

  • Solar H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova Ok, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF diabetes atlas: international, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;204:110945.

    Article 

    Google Scholar
     

  • Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro analysis of a drug supply system. J Nanopart Res. 2008;11(8):1937–46.

    Article 

    Google Scholar
     

  • Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh N, Son S, An J, Kim I, Choi M, Kong N, Tao W, Kim JS. Nanoscale porous natural polymers for drug supply and superior most cancers theranostics. Chem Soc Rev. 2021;50(23):12883–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bochicchio S, Dalmoro A, Barba AA, d’Amore M, Lamberti G. New preparative approaches for micro and nano drug supply carriers. Curr Drug Deliv. 2016;14(2):203–15.


    Google Scholar
     

  • Davoodi P, Lee LY, Xu Q, Sunil V, Solar Y, Soh S, Wang CH. Drug supply programs for programmed and on-demand launch. Adv Drug Ship Rev. 2018;132:104–38.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano primarily based drug supply programs: latest developments and future prospects. J Nanobiotechnol. 2018;16:71.

    Article 

    Google Scholar
     

  • Singh R, Lillard JW. Nanoparticle-based focused drug supply. Exp Mol Pathol. 2009;86(3):215–23.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to contemplate in an effort to alter the destiny of nanocarriers after oral supply. Nanomedicine. 2010;5(2):287–306.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral supply of insulin. J Biomat Sci-Polym E. 2022;33(16):2145–64.

    Article 
    CAS 

    Google Scholar
     

  • Son GH, Lee BJ, Cho CW. Mechanisms of drug launch from superior drug formulations similar to polymeric-based drug-delivery programs and lipid nanoparticles. J Pharm Investig. 2017;47(4):287–96.

    Article 
    CAS 

    Google Scholar
     

  • Abdel-Moneim A, Ramadan H. Novel methods to oral supply of insulin: present progress of nanocarriers for diabetes administration. Drug Develop Res. 2021;83(2):301–16.

    Article 

    Google Scholar
     

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug supply gadgets. J Management Launch. 2001;70(1–2):1–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takagi T. An idea of clever supplies. J Intel Mat Syst Str. 1990;1:149–56.

    Article 

    Google Scholar
     

  • Alarcón CDH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical purposes. Chem Soc Rev. 2005;34(3):276–85.

    Article 

    Google Scholar
     

  • Mahobia S, Bajpai J, Bajpai AK. Soya protein as doable potential nanocarriers for in-vitro oral supply of insulin in simulated gastric fluids (SGFs). Int J Polym Mater. 2017;67(6):340–50.

    Article 

    Google Scholar
     

  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate programs for drug supply. Nat Rev Drug Discov. 2014;13(11):813–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Danhier F, Feron O, Préat V. To use the tumor microenvironment: passive and lively tumor concentrating on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148(2):135–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee ES, Shin HJ, Na Ok, Bae YH. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Management Launch. 2003;90(3):363–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu C, City MW. Stimuli-responsive polymer nano-science: form anisotropy, responsiveness, purposes. Prog Polym Sci. 2018;78:24–46.

    Article 
    CAS 

    Google Scholar
     

  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for environment friendly and protected oral insulin supply. Int J Biol Macromol. 2015;72:640–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat Commun. 2022;13(1):6649.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromol. 2009;10(5):1212–6.

    Article 
    CAS 

    Google Scholar
     

  • Sahota T, Tomlins P, Taylor MJ. Lengthy-term stability of glucose responsive dextran methacrylate-concanavalin a methacrylamide gels as a part of an implantable synthetic pancreas. Int J Polym Mater. 2015;64(18):946–54.

    Article 
    CAS 

    Google Scholar
     

  • Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose responsive hydrogel networks primarily based on protein recognition. Macromol Biosci. 2009;9(9):864–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, Zhu LM. Glucose- and temperature-sensitive nanoparticles for insulin supply. Int J Nanomed. 2017;12:4037–57.

    Article 
    CAS 

    Google Scholar
     

  • Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin supply. Int J Biol Macromol. 2018;123:968–78.

    Article 
    PubMed 

    Google Scholar
     

  • Xu M, Huang J, Jiang S, He J, Wang Z, Qin H, Guan YQ. Glucose delicate konjac glucomannan/concanavalin A nanoparticles as oral insulin supply system. Int J Biol Macromol. 2022;202:296–308.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yufen X, Zhongmin T, Xiangang H, John J, Wei C, Chuang L, Jun Z, Na Ok, Nitin J, Jianzhong D, et al. Glucose-responsive oral insulin supply platform for one therapy a day in diabetes. Matter. 2021;4(10):3269–85.

    Article 

    Google Scholar
     

  • Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y. Metallic-organic frameworks for stimuli-responsive drug supply. Biomaterials. 2019;230:119619.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. A nanocomposite car primarily based on metal-organic framework nanoparticle integrated biodegradable microspheres for enhanced oral insulin supply. ACS Appl Mater Interfaces. 2020;12(20):22581–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alibolandi M, Alabdollah F, Sadeghi F, Mohammadi M, Abnous Ok, Ramezani M, Hadizadeh F. Dextran-b-poly(lactide-co-glycolide) polymersome for oral supply of insulin: in vitro and in vivo analysis. J Management Launch. 2016;227:58–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mahkam M. Starch-based polymeric carriers for oral-insulin supply. J Biomed Mater Res A. 2009;92A(4):1392–7.

    Article 

    Google Scholar
     

  • Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin supply. Carbohyd Polym. 2020;246:116617.

    Article 
    CAS 

    Google Scholar
     

  • Inchaurraga L, Martínez-López AL, Martin-Arbella N, Irache JM. Zein-based nanoparticles for the oral supply of insulin. Drug Deliv Transl Re. 2020;10(6):1601–11.

    Article 
    CAS 

    Google Scholar
     

  • Bao X, Qian Ok, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles improve the oral absorption and hypoglycemic impact of insulin. J Mater Chem B. 2021;9(31):6234–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Andreani T, de Souza ALR, Kiill CP, Lorenzón EN, Fangueiro JF, Calpena AC, Chaud MV, Garcia ML, Gremião MPD, Silva AM, et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin supply. Int J Pharm. 2014;473(1–2):627–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. Biomed Res Int. 2014;2014:180549.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on therapy of degenerative ailments. Int Nano Lett. 2017;7(2):91–122.

    Article 
    CAS 

    Google Scholar
     

  • Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The function of polysaccharides from pure sources to design oral insulin micro- and nanoparticles meant for the therapy of diabetes mellitus: a evaluate. Carbohyd Polym. 2020;256:117504.

    Article 

    Google Scholar
     

  • Hu Q, Lu Y, Luo Y. Latest advances in dextran-based drug supply programs: from fabrication methods to purposes. Carbohyd Polym. 2021;264:117999.

    Article 
    CAS 

    Google Scholar
     

  • Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent natural frameworks for biomedical purposes. Adv Healthc Mater. 2021;10(6):2002090.

    Article 
    CAS 

    Google Scholar
     

  • Li WL, Zheng HC, Bukuru J, De Kimpe N. Pure medicines used within the conventional Chinese language medical system for remedy of diabetes mellitus. J Ethnopharmacol. 2004;92(1):1–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moroz E, Matoori S, Leroux JC. Oral supply of macromolecular medication: the place we’re after nearly 100 years of makes an attempt. Adv Drug Deliv Rev. 2016;101:108–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Compart J, Li X, Fettke J. Starch-A posh and undeciphered biopolymer. J Plant Physiol. 2021;258:153389.

    Article 
    PubMed 

    Google Scholar
     

  • Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and biomedical purposes of native and modified starch: a evaluate. Starke. 2020;72(7–8):1900270.

    Article 
    CAS 

    Google Scholar
     

  • Zhu F. Relationships between amylopectin inner molecular construction and physicochemical properties of starch. Developments Meals Sci Tech. 2018;78:234–42.

    Article 
    CAS 

    Google Scholar
     

  • Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Structural modifications and methods for native starch for purposes in superior drug supply. Biomed Res Int. 2022;2022:2188940.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Appl Surf Sci. 2020;502:144282.

    Article 

    Google Scholar
     

  • Qiu A, Wang Y, Zhang G, Wang H. Pure polysaccharide-based nanodrug supply programs for therapy of diabetes. Polymers. 2022;14(15):3217.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in bioactive polysaccharide-derivatives: a evaluate. Meals Rev Int. 2021;39(3):1612–27.

    Article 

    Google Scholar
     

  • Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An summary of chitosan nanoparticles and its software in non-parenteral drug supply. Pharmaceutics. 2017;9(4):53–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Methods TMM, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for software in mucoadhesive drug supply programs. Polymers. 2018;10(3):267–304.

    Article 

    Google Scholar
     

  • Shingel KI. Present information on biosynthesis, organic exercise, and chemical modification of the exopolysaccharide, pullulan. Carbohyd Res. 2004;339(3):447–60.

    Article 
    CAS 

    Google Scholar
     

  • Varanko A, Saha S, Chilkoti A. Latest traits in protein and peptide-based biomaterials for superior drug supply. Adv Drug Deliv Rev. 2020;156:133–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ferroni C, Varchi G. Keratin-based nanoparticles as drug supply carriers. Appl Sci. 2021;11(20):9417.

    Article 

    Google Scholar
     

  • Chaitanya Reddy C, Khilji IA, Gupta A, Bhuyar P, Mahmood S, Saeed Al-Japairai KA, Chua GK. Valorization of keratin waste biomass and its potential purposes. J Water Course of Eng. 2021;40:101707.

    Article 

    Google Scholar
     

  • Kunjiappan S, Theivendren P, Pavadai P, Govindaraj S, Sankaranarayanan M, Somasundaram B, Arunachalam S, Ram Kumar Pandian S, Ammunje DN. Design and in silico modeling of indoloquinoxaline integrated keratin nanoparticles for modulation of glucose metabolism in 3T3-L1 adipocytes. Biotechnol Progr. 2019;36(1):1–14.


    Google Scholar
     

  • Banerjee D, Flanagan PR, Cluett J, Valberg LS. Transferrin receptors within the human gastrointestinal-tract-relationship to physique iron shops. Gastroenterology. 1986;91(4):861–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xia CQ, Wang J, Shen WC. Hypoglycemic impact of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2000;295(2):594–600.

    PubMed 
    CAS 

    Google Scholar
     

  • Kavimandan NJ, Losi E, Peppas NA. Novel supply system primarily based on complexation hydrogels as supply autos for insulin-transferrin conjugates. Biomaterials. 2006;27(20):3846–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu X, Wu J, Shan W, Tao W, Zhao L, Lim J-M, D’Ortenzio M, Karnik R, Huang Y, Shi J, et al. Polymeric nanoparticles amenable to simultaneous set up of exterior concentrating on and inside therapeutic proteins. Angew Chemie. 2016;55(10):3309–12.

    Article 
    CAS 

    Google Scholar
     

  • Ouyang J, Deng B, Zou B, Li Y, Bu Q, Tian Y, Chen M, Chen W, Kong N, Chen T, et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J Am Chem Soc. 2023;145(22):12193–205.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu D, Xu F, Solar B, Fu R, He H, Matyjaszewski Ok. Design and preparation of porous polymers. Chem Rev. 2012;112(7):3959–4015.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug supply programs. Nat Rev Chem. 2017;1(8):63–80.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Diao P, Yokoyama H, Inoue Y, Tanabe Ok, Wang X, Hayashi C, Yokoyama T, Zhang Z, Hu X, et al. Acidic activated charcoal prevents weight problems and insulin resistance in high-fat diet-fed mice. Entrance Nutr. 2022;9:1–16.


    Google Scholar
     

  • Huber M, Pohl W, Reinisch G, Attems J, Pescosta S, Lintner F. Lung illness 35 years after aspiration of activated charcoal together with pulmonary lymphangioleiomyomatosis: a histological and clinicopathological examine with scanning electron microscopic analysis and ingredient evaluation. Virchows Arch. 2006;449(2):225–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, et al. Silica nanoparticles on the oral supply of insulin. Professional Opin Drug Del. 2018;15(8):805–20.

    Article 
    CAS 

    Google Scholar
     

  • Juere E, Caillard R, Marko D, Del Favero G, Kleitz F. Sensible protein-based formulation of dendritic mesoporous silica nanoparticles: towards oral supply of insulin. Chem-Eur J. 2020;26(23):5195–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qian BB, et al. Porous coordination polymers: improvement and analysis progress. Sci China Chem. 2019;49:212837231.


    Google Scholar
     

  • Zhao J, Yang Y, Han X, Liang C, Liu J, Tune X, Ge Z, Liu Z. Redox-sensitive nanoscale coordination polymers for drug supply and most cancers theranostics. ACS Appl Mater Interfaces. 2017;9(28):23555–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao Y, Deng DS, Ma LF, Ji BM, Wang LY. A brand new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of beta-ketoesters. Chem Commun. 2013;49(87):10299–301.

    Article 
    CAS 

    Google Scholar
     

  • Shen X, Pan Y, Solar Z, Liu D, Xu H, Yu Q, Trivedi M, Kumar A, Chen J, Liu J. Design of metal-organic frameworks for pH-responsive drug supply software. Mini-Rev Med Chem. 2019;19(20):1644–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cai H, Huang YL, Li D. Organic metal-organic frameworks: buildings, host-guest chemistry and bio-applications. Coordin Chem Rev. 2017;378:207–21.

    Article 

    Google Scholar
     

  • Fu HR, Wang N, Qin JH, Han ML, Ma LF, Wang F. Spatial confinement of a cationic MOF: a SC-SC method for top capability Cr (vi)-oxyanion seize in aqueous resolution. Chem Commun. 2018;54(82):11645–8.

    Article 
    CAS 

    Google Scholar
     

  • Yang X, Yuan S, Zou L, Drake H, Zhang Y, Qin J, Alsalme A, Zhou HC. One-step synthesis of hybrid core-shell metal-organic frameworks. Angew Chem Int Edit. 2018;57(15):3927–32.

    Article 
    CAS 

    Google Scholar
     

  • Guan HY, LeBlanc RJ, Xie SY, Yue Y. Latest progress within the syntheses of mesoporous metal-organic framework supplies. Coordin Chem Rev. 2018;369:76–90.

    Article 
    CAS 

    Google Scholar
     

  • Solar Z, Wu S, Ma J, Shi H, Wang L, Sheng A, Yin T, Solar L, Li G. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles. ACS Appl Mater Interfaces. 2019;11(40):36316–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rohra N, Gaikwad G, Dandekar P, Jain R. Microfluidic Synthesis of a bioactive metal-organic framework for glucose-responsive insulin supply. ACS Appl Mater Interfaces. 2022;14(6):8251–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mal A, Ding H, Li M, Li W, Wang C. Covalent natural frameworks with nanopores for organic purposes: a evaluate. ACS Appl Nano Mater. 2022;5(10):13972–84.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Zhu W, Feng L, Chen Q, Chao Y, Dong Z, Liu Z. Nanoscale covalent natural polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic remedy of most cancers. Nano Res. 2017;11(6):3244–57.

    Article 

    Google Scholar
     

  • Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Tune W. Porous natural polymers for drug supply: hierarchical pore buildings, variable morphologies, and organic properties. Biomater Sci. 2022;10(19):5369–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh Y, Meher JG, Raval Ok, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: ideas, improvement and purposes in drug supply. J Management Launch. 2017;252:28–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li H, Ding J, Guan X, Chen F, Li C, Zhu L, Xue M, Yuan D, Valtchev V, Yan Y, et al. Three-dimensional large-pore covalent natural framework with stp topology. J Am Chem Soc. 2020;142(31):13334–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH, Zhang W. Ionic covalent natural frameworks with spiroborate linkage. Angew Chem. 2015;55(5):1737–41.

    Article 

    Google Scholar
     

  • Park Ok, Lee Ok, Kim H, Ganesan V, Cho Ok, Jeong SK, Yoon S. Preparation of covalent triazine frameworks with imidazolium cations embedded in fundamental websites and their software for CO2 seize. J Mater Chem A. 2017;5(18):8576–82.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Zhai L, Tong M, Kundu T, Liu G, Ying Y, Dong J, Wang Y, Zhao D. Selective fuel permeation in blended matrix membranes accelerated by hole ionic covalent natural polymers. ACS Maintain Chem Eng. 2018;7(1):1564–73.

    Article 

    Google Scholar
     

  • Maurya M, Singh JK. Impact of ionic liquid impregnation in extremely water-stable metal-organic frameworks, covalent natural frameworks, and carbon-based adsorbents for post-combustion flue fuel therapy. Vitality Fuels. 2019;33:3421–8.

    Article 
    CAS 

    Google Scholar
     

  • Ying Y, Tong M, Ning S, Ravi SK, Peh SB, Tan SC, Pennycook SJ, Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent natural nanosheets with decreased apertures for fuel separation. J Am Chem Soc. 2020;142(9):4472–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • van der Jagt R, Vasileiadis A, Veldhuizen H, Shao P, Feng X, Ganapathy S, Habisreutinger NC, van der Veen MA, Wang C, Wagemaker M, et al. Synthesis and structure-property relationships of polyimide covalent natural frameworks for carbon dioxide seize and (aqueous) sodium-ion batteries. Chem Mater. 2021;33(3):818–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin F, Lin E, Wang T, Geng S, Wang T, Liu W, Xiong F, Wang Z, Chen Y, Cheng P, et al. Backside-up synthesis of 8-connected three-dimensional covalent natural frameworks for extremely environment friendly ethylene/ethane separation. J Am Chem Soc. 2022;144(12):5643–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu Y, Xu H, Chen X, Gao J, Jiang D. A π-electronic covalent natural framework catalyst: π-walls as catalytic beds for Diels-Alder reactions beneath ambient situations. Chem Commun. 2015;51(50):10096–8.

    Article 
    CAS 

    Google Scholar
     

  • Liu M, Jiang Ok, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, et al. Controlling monomer feeding charge to realize extremely crystalline covalent triazine frameworks. Adv Mater. 2019;31(19):1–7.

    Article 
    CAS 

    Google Scholar
     

  • Mal A, Mishra RK, Praveen VK, Khayum MA, Banerjee R, Ajayaghosh A. Supramolecular reassembly of self-exfoliated ionic covalent natural nanosheets for label-free detection of double-stranded DNA. Angew Chem Int Edit. 2018;57(28):8443–7.

    Article 
    CAS 

    Google Scholar
     

  • Zuo H, Li Y, Liao Y. Europium ionic liquid grafted covalent natural framework with twin luminescence emissions as delicate and selective acetone sensor. ACS Appl Mater Interfaces. 2019;11(42):39201–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh H, Devi M, Jena N, Iqbal MM, Nailwal Y, De Sarkar A, Pal SK. Proton-triggered fluorescence switching in self-exfoliated ionic covalent natural nanosheets for purposes in selective detection of anions. ACS Appl Mater Interfaces. 2020;12(11):13248–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang W, Zhao Y, Zhang D, Zhu X, Liu H, Solar B. Environment friendly and strong twin modes of fluorescence sensing and smartphone readout for the detection of pyrethroids utilizing synthetic receptors sure inside a covalent natural framework. Biosens Bioelectron. 2021;194:113582.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao L, Liang X, Ni Z, Zhao H, Ge B, Li W. Covalent natural framework modified polyacrylamide electrospun nanofiber membrane as a “turn-on” fluorescent sensor for major aliphatic amine fuel. Sensor Actuat B-Chem. 2022;366:131988.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Yin L, Cheng D, Zhao S, Zang HY, Zhang N, Zhu G. Floor-mediated development of an ultrathin free-standing covalent natural framework membrane for environment friendly proton conduction. Angew Chem Int Edit. 2021;60(27):14875–80.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Shi B, Yang H, Guan J, Liang X, Fan C, You X, Wang Y, Zhang Z, Wu H, et al. Assembling covalent natural framework membranes with superior ion change capability. Nat Commun. 2022;13(1):1020–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang X, Tian Y, Yuan Y, Kim Y. Ionic covalent natural frameworks for power gadgets. Adv Mater. 2021;33(52):2105647.

    Article 
    CAS 

    Google Scholar
     

  • Zou J, Fan Ok, Chen Y, Hu W, Wang C. Views of ionic covalent natural frameworks for rechargeable batteries. Coordin Chem Rev. 2022;458:214431.

    Article 
    CAS 

    Google Scholar
     

  • Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. 3D porous crystalline polyimide covalent natural frameworks for drug supply. J Am Chem Soc. 2015;137(26):8352–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang G, Ji Y, Li X, Wang X, Tune M, Gou H, Gao S, Jia X. Polymer-covalent natural frameworks composites for glucose and pH dual-responsive insulin supply in mice. Adv Healthc Mater. 2020;9(14):2000221.

    Article 
    CAS 

    Google Scholar
     

  • Ghosh P, Banerjee P. Drug supply utilizing biocompatible covalent natural frameworks (COFs) in the direction of a therapeutic method. Chem Commun. 2023;59(84):12527–47.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Wen D, Zhu W, Ben T, Negishi Y. Report ultralarge-pores, low density three-dimensional covalent natural framework for managed drug supply. Angew Chem Int Edit. 2023;62(13):e202300172.

    Article 
    CAS 

    Google Scholar
     

  • Ge L, Qiao C, Tang Y, Zhang X, Jiang X. Gentle-activated hypoxia-sensitive covalent natural framework for tandem-responsive drug supply. Nano Lett. 2021;21(7):3218–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. Three-dimensional covalent natural framework with scu-c topology for drug supply br. ACS Appl Mater Interfaces. 2022;14(42):48045–51.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. 8-Hydroxyquinoline functionalized covalent natural framework as a pH delicate provider for drug supply. Mat Sci Eng C-Mater. 2020;117:111243.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Ok, Gong P, Tune S, Li J, Peng J, Wang Y, Qi C, Wang D, Liu Z. Dimension-controllable covalent natural frameworks with excessive NIR absorption for focused supply of glucose oxidase. J Mol Liq. 2022;346:117896.

    Article 
    CAS 

    Google Scholar
     

  • Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent natural frameworks. Science. 2005;310(5751):1166–70.

    Article 
    PubMed 

    Google Scholar
     

  • Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent natural frameworks: a great platform for designing ordered supplies and superior purposes. Chem Soc Rev. 2020;50(1):120–242.

    Article 
    PubMed 

    Google Scholar
     

  • de la Pena RA, Rodriguez-San-Miguel D, Stylianou KC, Cavallini M, Gentili D, Liscio F, Milita S, Maria Roscioni O, Luisa Ruiz-Gonzalez M, Carbonell C, et al. Direct on-surface patterning of a crystalline laminar covalent natural framework synthesized at room temperature. Chem-Eur J. 2015;21(30):10666–70.

    Article 

    Google Scholar
     

  • Guan X, Ma Y, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Quick, ambient temperature and stress ionothermal synthesis of three-dimensional covalent natural frameworks. J Am Chem Soc. 2018;140(13):4494–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao W, Yu C, Zhao J, Chen F, Guan X, Li H, Tang B, Yu G, Valtchev V, Yan Y, et al. 3D Hydrazone-functionalized covalent natural frameworks as pH-triggered rotary switches. Small. 2021;17(41):202102630.

    Article 

    Google Scholar
     

  • Zou J, Ren X, Tan L, Huang Z, Gou L, Meng X. Preparation and properties of covalent natural framework nanoparticles with excessive drug loading. Entrance Mater Sci. 2021;15(3):465–70.

    Article 

    Google Scholar
     

  • Wang Y, Solar X, Wang Y. Synthesis of pH-responsive covalent natural frameworks nanocarrier for plumbagin supply. Rsc Adv. 2022;12(25):16046–50.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y. Nanoscale covalent natural frameworks as good carriers for drug supply. Chem Commun. 2016;52(22):4128–31.

    Article 
    CAS 

    Google Scholar
     

  • Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV. Exploiting noncovalent interactions in an imine-based covalent natural framework for quercetin supply. Adv Mater. 2016;28(39):8749–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath Ok, Díaz Díaz D, Banerjee R. Focused drug supply in covalent natural nanosheets (CONs) through sequential postsynthesis. J Am Chem Soc. 2017;139(12):4513–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang G, Li X, Liao Q, Liu Y, Xi Ok, Huang W, Jia X. Water-dispersible PEG-curcumin/amine-functionalized covalent natural framework nanocomposites as good carriers for in vivo drug supply. Nat Commun. 2018;9:2785.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Zhu W, Liu J, Dong Z, Liu Z. pH-responsive nanoscale covalent natural polymers as a biodegradable drug provider for mixed photodynamic-chemotherapy of most cancers. ACS Appl Mater Interfaces. 2018;10(17):14475–82.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu S, Yang J, Guo R, Deng L, Dong A, Zhang J. Facile fabrication of redox-responsive covalent natural framework nanocarriers for effectively loading and delivering doxorubicin. Macromol Speedy Comm. 2020;41(4):1–6.

    Article 

    Google Scholar
     

  • Anbazhagan R, Krishnamoorthi R, Kumaresan S, Tsai H-C. Thioether-terminated triazole-bridged covalent natural framework for dual-sensitive drug supply software. Mater Sci Eng C. 2021;120:111704.

    Article 
    CAS 

    Google Scholar
     

  • Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Preparation and characterization of insulin-loaded zein/carboxymethylated short-chain amylose complicated nanoparticles. J Agric Meals Chem. 2018;66(35):9335–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Y, Tune H, Huang Ok, Guan X. Novel porous starch/alginate hydrogels for managed insulin launch with twin response to pH and amylase. Meals Funct. 2021;12(19):9165–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li S, Liang N, Yan P, Kawashima Y, Solar S. Inclusion complicated primarily based on n-acetyl-l-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin supply. Carbohyd Polym. 2020;252:117202.

    Article 

    Google Scholar
     

  • Liu C, Xu H, Solar Y, Zhang X, Cheng H, Mao S. Design of virus-mimicking polyelectrolyte complexes for enhanced oral insulin supply. J Pharm Sci. 2019;108(10):3408–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral supply of insulin. Mol Pharm. 2019;17(1):239–50.

    Article 
    PubMed 

    Google Scholar
     

  • Shirzadian T, Nourbakhsh MS, Fattahi A, Bahrami G, Mohammadi G. Characterization and optimization of de-esterified tragacanth-chitosan nanocomposite as a possible provider for oral supply of insulin: in vitro and ex vivo research. J Biomed Mater Res A. 2021;109(11):2164–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu J, Chen L, Zhang X, Xu C, Liu J, Gu J, Ji H, Feng X, Yan C, Tune X. A core-shell insulin/CS-PLGA nanoparticle for enhancement of oral insulin bioavailability: in vitro and in vivo examine. Int J Polym Mater. 2022;72(8):656–64.

    Article 

    Google Scholar
     

  • Verma A, Sharma S, Gupta PK, Singh A, Teja BV, Dwivedi P, Gupta GK, Trivedi R, Mishra PR. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive provider for improved oral supply of insulin. Acta Biomater. 2015;31:288–300.

    Article 
    PubMed 

    Google Scholar
     

  • Wu H, Guo T, Nan J, Yang L, Liao G, Park HJ, Li J. Hyaluronic-acid-coated chitosan nanoparticles for insulin oral supply: fabrication, characterization, and hypoglycemic capacity. Macromol Biosci. 2022;22(7):2100493.

    Article 
    CAS 

    Google Scholar
     

  • Zhang YW, Tu LL, Tang Z, Wang Q, Zheng GL, Yin LN. pH-sensitive chitosan-deoxycholic acid/alginate nanoparticles for oral insulin supply. Pharm Dev Technol. 2021;26(9):943–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu Z, Chen L, Duan X, Li X, Ren H. Microparticles primarily based on alginate/chitosan/casein three-dimensional system for oral insulin supply. Polym Advan Technol. 2021;32(11):4352–61.

    Article 
    CAS 

    Google Scholar
     

  • Tian H, He Z, Solar C, Yang C, Zhao P, Liu L, Leong KW, Mao H-Q, Liu Z, Chen Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to reinforce oral supply of insulin. Adv Healthc Mater. 2018;7(17):1800285.

    Article 

    Google Scholar
     

  • Xie Y, Jiang S, Xia F, Hu X, He H, Yin Z, Qi J, Lu Y, Wu W. Glucan microparticles thickened with thermosensitive gels as potential carriers for oral supply of insulin. J Mater Chem B. 2016;4(22):4040–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reboredo C, Gonzalez-Navarro CJ, Martinez-Lopez AL, Martinez-Oharriz C, Sarmento B, Irache JM. Zein-based nanoparticles as oral carriers for insulin supply. Pharmaceutics. 2021;14(1):39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang J-H, Wang S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal limitations. J Colloid Interf Sci. 2020;582:364–75.

    Article 

    Google Scholar
     

  • Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S. One-pot synthesis of a metal-organic framework-based drug provider for clever glucose-responsive insulin supply. Chem Commun. 2018;54(42):5377–80.

    Article 
    CAS 

    Google Scholar
     

  • He M, Yu P, Hu Y, Zhang J, He M, Nie C, Chu X. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles allow intravenous glucose-responsive insulin supply. ACS Appl Mater Interfaces. 2021;13(17):19648–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments