Yang, L. et al. Perovskite lead-free dielectrics for power storage functions. Prog. Mater. Sci. 102, 72–108 (2019).
Yang, M., Ren, W., Guo, M. & Shen, Y. Excessive-energy-density and excessive effectivity polymer dielectrics for top temperature electrostatic power storage: a overview. Small 18, 2205247 (2022).
Tan, D. Q. Evaluation of polymer-based nanodielectric exploration and movie scale-up for superior capacitors. Adv. Funct. Mater. 30, 1808567 (2020).
McNab, I. R. Massive-scale pulsed energy alternatives and challenges. IEEE Trans. Plasma Sci. 42, 1118–1127 (2014).
Chen, Q., Shen, Y., Zhang, S. & Zhang, Q. M. Polymer-based dielectrics with excessive power storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015).
Li, H. et al. Dielectric polymers for high-temperature capacitive power storage. Chem. Soc. Rev. 50, 6369–6400 (2021).
Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. Excessive-temperature polyimide dielectric supplies for power storage: principle, design, preparation and properties. Power Environ. Sci. 15, 56–81 (2021).
Feng, Q. et al. Latest progress and future prospects on all-organic polymer dielectrics for power storage capacitors. Chem. Rev. 122, 3820–3878 (2022).
Yang, Y., Dang, Z., Li, Q. & He, J. Self-healing {of electrical} harm in polymers. Adv. Sci. 7, 2002131 (2020).
Pei, J.-Y., Yin, L.-J., Zhong, S.-L. & Dang, Z.-M. Suppressing the lack of polymer-based dielectrics for top energy power storage. Adv. Mater. 35, 2203623 (2023).
Li, Q. et al. Excessive-temperature dielectric supplies for electrical power storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).
Tan, D., Zhang, L., Chen, Q. & Irwin, P. Excessive-temperature capacitor polymer movies. J. Electron. Mater. 43, 4569–4575 (2014).
Popielarz, R. & Chiang, C. Okay. Polymer composites with the dielectric fixed akin to that of barium titanate ceramics. Mater. Sci. Eng. B 139, 48–54 (2007).
Solar, Y., Zhang, Z. & Wong, C. P. Affect of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46, 2297–2305 (2005).
Mackey, M. et al. Enhanced breakdown energy of multilayered movies fabricated by pressured meeting microlayer coextrusion. J. Phys. D 42, 175304 (2009).
Manoharan, M. P., Lanagan, M. T., Zhou, C., Kushner, D. & Zhang, S. H. Enhancement of dielectric breakdown energy in glass utilizing polymer coatings. In IEEE Worldwide Energy Modulator and Excessive Voltage Convention 280–283 (IEEE, 2012).
Dang, Z. M., Yuan, J. Okay., Yao, S. H. & Liao, R. J. Versatile nanodielectric supplies with excessive permittivity for energy power storage. Adv. Mater. 25, 6334–6365 (2013).
Luo, H. et al. Interface design for top power density polymer nanocomposites. Chem. Soc. Rev. 48, 4424–4465 (2019).
Yang, M. et al. Floor engineering of 2D dielectric polymer movies for scalable manufacturing of high-energy-density movies. Prog. Mater. Sci. 128, 100968 (2022).
Zhu, L. Exploring methods for top dielectric fixed and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687 (2014).
Rabe, Okay. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics (Springer, 2007).
Yuan, X., Matsuyama, Y. & Chung, T. C. M. Synthesis of functionalized isotactic polypropylene dielectrics for electrical power storage functions. Macromolecules 43, 4011–4015 (2010).
Wei, J. et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties. J. Appl. Polym. Sci. 135, 46837 (2018).
Treufeld, I., Wang, D. H., Kurish, B. A., Tan, L.-S. & Zhu, L. Enhancing electrical power storage utilizing polar polyimides with nitrile teams immediately connected to the principle chain. J. Mater. Chem. A 2, 20683–20696 (2014).
Ren, W. et al. Excessive-temperature electrical power storage performances of dipolar glass polymer nanocomposites crammed with hint ultrafine nanoparticles. Chem. Eng. J. 420, 127614 (2020).
Zhu, Y. F., Zhang, Z. B., Litt, M. H. & Zhu, L. Excessive dielectric fixed sulfonyl-containing dipolar glass polymers with enhanced orientational polarization. Macromolecules 51, 6257–6266 (2018).
Wu, S. et al. Fragrant polythiourea dielectrics with ultrahigh breakdown discipline energy, low dielectric loss, and excessive electrical power density. Adv. Mater. 25, 1734–1738 (2013).
Zhang, M. et al. Polymer dielectrics with simultaneous ultrahigh power density and low loss. Adv. Mater. 33, 2008198 (2021).
Zhang, Z., Wang, D. H., Litt, M. H., Tan, L. & Zhu, L. Excessive-temperature and high-energy-density dipolar glass polymers primarily based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018).
Wei, J. & Zhu, L. Intrinsic polymer dielectrics for top power density and low loss electrical power storage. Prog. Polym. Sci. 106, 101254 (2020).
Prateek, Thakur, V. Okay. & Gupta, R. Okay. Latest progress on ferroelectric polymer-based nanocomposites for top power density capacitors: synthesis, dielectric properties, and future elements. Chem. Rev. 116, 4260–4317 (2016).
Solar, W. et al. Dielectric and power storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 121, 244101 (2017).
Qi, L., Lee, B., Chen, S. H., Samuels, W. D. & Exarhos, G. Excessive‐dielectric‐fixed silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005).
Wang, L. & Dang, Z. Carbon nanotube composites with excessive dielectric fixed at low percolation threshold. Appl. Phys. Lett. 87, 042903 (2005).
Xia, F. et al. Excessive electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574–1577 (2002).
Chung, T. & Petchsuk, A. Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromolecules 35, 7678–7684 (2002).
Zhang, Q., Bharti, V. & Zhao, X. Big electrostriction and relaxor ferroelectric habits in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).
Bharti, V. et al. Ultrahigh discipline induced pressure and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Mater. Res. Innov. 2, 57–63 (1998).
Mabboux, P.-Y. & Gleason, Okay. Okay. 19F NMR characterization of electron beam irradiated vinylidene fluoride–trifluoroethylene copolymers. J. Fluor. Chem. 113, 27–35 (2002).
Wang, L., Zhao, X. & Feng, J. Results of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) copolymers studied by solid-state nuclear magnetic resonance spectroscopy. J. Polym. Sci. B 44, 1714–1724 (2006).
Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).
Liu, Y. et al. Relaxor ferroelectric polymers: perception into excessive electrical power storage properties from a molecular perspective. Small Sci. 1, 2000061 (2021).
Liu, Y. et al. Ferroelectric polymers exhibiting behaviour paying homage to a morphotropic part boundary. Nature 562, 96–100 (2018).
Jiang, J. et al. Ultrahigh discharge effectivity in multilayered polymer nanocomposites of excessive power density. Power Storage Mater. 18, 213–221 (2019).
Li, Q. et al. Resolution-processed ferroelectric terpolymer nanocomposites with excessive breakdown energy and power density using boron nitride nanosheets. Power Environ. Sci. 8, 922–931 (2015).
Tang, H., Lin, Y. & Sodano, H. A. Synthesis of excessive side ratio BaTiO3 nanowires for top power density nanocomposite capacitors. Adv. Power Mater. 3, 451–456 (2013).
Zhang, Y. et al. Power storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Power 66, 104195 (2019).
Zhang, Z. et al. Excessive-κ polymers of intrinsic microporosity: a brand new class of excessive temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592–597 (2020).
Thakur, Y. et al. Producing excessive dielectric fixed blends from decrease dielectric fixed dipolar polymers utilizing nanostructure engineering. Nano Power 32, 73–79 (2017).
Zhang, Q., Chen, X., Zhang, T. & Zhang, Q. M. Big permittivity supplies with low dielectric loss over a broad temperature vary enabled by weakening intermolecular hydrogen bonds. Nano Power 64, 103916 (2019).
Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers (Establishment of Engineering and Expertise, 1992).
Ieda, M. Dielectric breakdown technique of polymers. IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).
Shimizu, N., Katsukawa, H., Miyauchi, M., Kosaki, M. & Horii, Okay. The area cost habits and luminescence phenomena in polymers at 77 Okay. IEEE Trans. Electr. Insul. 14, 256–263 (1979).
Kofod, G., Sommer-Larsen, P., Kronbluh, R. & Pelrine, R. Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
Densley, J., Kalicki, T. & Nadolny, Z. Traits of PD pulses in electrical bushes and interfaces in extruded cables. IEEE Trans. Dielectr. Electr. Insul. 8, 48–57 (2001).
Ray, S. An Introduction to Excessive Voltage Engineering (PHI Studying, 2013).
Pei, J. et al. All-organic dielectric polymer movies exhibiting superior electrical breakdown energy and discharged power density by adjusting the electrode–dielectric interface with an natural nano-interlayer. Power Environ. Sci. 14, 5513–5522 (2021).
Seitz, F. On the speculation of electron multiplication in crystals. Phys. Rev. 76, 1376–1393 (1949).
Frohlich, H. On the speculation of dielectric breakdown in solids. Proc. R. Soc. Lond. 188, 521–532 (1947).
Chiu, F. C. A overview on conduction mechanisms in dielectric movies. Adv. Mater. Sci. Eng. 2014, 578168 (2014).
Zhang, X. et al. Polymer nanocomposites with ultrahigh power density and excessive discharge effectivity by modulating their nanostructures in three dimensions. Adv. Mater. 30, 1707269 (2018).
Jiang, J. et al. Polymer nanocomposites with interpenetrating gradient construction exhibiting ultrahigh discharge effectivity and power density. Adv. Power Mater. 9, 1803411 (2019).
Bao, Z. W. et al. Negatively charged nanosheets considerably improve the energy-storage functionality of polymer-based nanocomposites. Adv. Mater. 32, 1907227 (2020).
Solar, B. et al. Wonderful stability in polyetherimide/SiO2 nanocomposites with ultrahigh power density and discharge effectivity at excessive temperature. Small 18, 2202421 (2022).
Li, H. et al. Scalable polymer nanocomposites with document high-temperature capacitive efficiency enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019).
Li, Q., Han, Okay., Gadinski, M. R., Zhang, G. & Wang, Q. Excessive power and energy density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244–6249 (2014).
Shen, Z. et al. Excessive-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018).
Li, H. et al. Ternary polymer nanocomposites with concurrently enhanced dielectric fixed and breakdown energy for high-temperature electrostatic capacitors. Infomat 2, 389–400 (2020).
Wang, P. et al. Excessive-temperature versatile nanocomposites with ultra-high power storage density by nanostructured MgO fillers. Adv. Funct. Mater. 32, 2204155 (2022).
Li, Q. et al. Versatile high-temperature dielectric supplies from polymer nanocomposites. Nature 523, 576–579 (2015).
Luo, S. et al. Considerably enhanced electrostatic power storage efficiency of versatile polymer composites by introducing extremely insulating-ferroelectric microhybrids as fillers. Adv. Power Mater. 9, 1803204 (2019).
Luo, B. et al. Superhierarchical inorganic/natural nanocomposites exhibiting simultaneous ultrahigh dielectric power density and excessive effectivity. Adv. Funct. Mater. 31, 2007994 (2021).
Wang, P. et al. Ultrahigh power storage efficiency of layered polymer nanocomposites over a broad temperature vary. Adv. Mater. 33, 2103338 (2021).
Hu, P. et al. Topological-structure modulated polymer nanocomposites exhibiting extremely enhanced dielectric energy and power density. Adv. Funct. Mater. 24, 3172–3178 (2014).
Shen, Y. et al. Modulation of topological construction induces ultrahigh power density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Power 18, 176–186 (2015).
Wang, Y., Li, Z., Wu, C. & Cao, Y. Excessive-temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chem. Eng. J. 401, 126093 (2020).
Zhu, Y. et al. Excessive power density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Power Mater. 9, 1901826 (2019).
Bai, H. R., Zhu, Okay., Wang, Z., Shen, B. & Zhai, J. W. 2D fillers extremely enhance the discharge power density of polymer-based nanocomposites with trilayered structure. Adv. Funct. Mater. 31, 2102646 (2021).
Wang, Y. et al. Gradient-layered polymer nanocomposites with considerably improved insulation efficiency for dielectric power storage. Power Storage Mater 24, 626 (2019).
Wang, H. Q. et al. Dielectric properties and power storage efficiency of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 437, 135431 (2022).
Li, J. et al. Establishing bidirectional-matched interface between polymer and 2D nanosheets for enhancing power storage efficiency of the composites. Power Storage Mater. 54, 605–614 (2022).
Zhang, B. et al. Reviving the ‘Schottky’ barrier for versatile polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33, 2101374 (2021).
Wang, Y. et al. Interfacial 2D montmorillonite nanocoatings allow sandwiched polymer nanocomposites to exhibit ultrahigh capacitive power storage efficiency at elevated temperatures. Adv. Sci. 9, 2204760 (2022).
Nakamura, S. et al. Results of filler-size on electrical treeing in epoxy/silica nanocomposites. In 2020 IEEE Convention on Electrical Insulation and Dielectric Phenomena 184–187 (IEEE, 2020).
Yue, D. et al. Prediction of power storage efficiency in polymer composites utilizing high-throughput stochastic breakdown simulation and machine studying. Adv. Sci. 9, 2105773 (2022).
Ai, D. et al. Tuning nanofillers in in situ ready polyimide nanocomposites for high-temperature capacitive power storage. Adv. Power Mater. 10, 1903881 (2020).
Jiang, Y. D. et al. Ultrahigh power density in constantly gradient-structured all-organic dielectric polymer movies. Adv. Funct. Mater. 32, 2200848 (2022).
Li, H. et al. Excessive-performing polysulfate dielectrics for electrostatic power storage beneath harsh circumstances. Joule 7, 95–111 (2023).
Li, H. et al. Crosslinked fluoropolymers exhibiting superior high-temperature power density and charge-discharge effectivity. Power Environ. Sci. 13, 1279–1286 (2020).
Khanchaitit, P., Han, Okay., Gadinski, M. R., Li, Q. & Wang, Q. Ferroelectric polymer networks with excessive power density and improved discharged effectivity for dielectric power storage. Nat. Commun. 4, 2845 (2013).
Pan, Z. et al. Tailoring poly(styrene‐co‐maleic anhydride) networks for all‐polymer dielectrics exhibiting ultrahigh power density and cost–discharge effectivity at elevated temperatures. Adv. Mater. 35, 2207580 (2022).
Chen, S. Y. et al. Uneven alicyclic amine-polyether amine molecular chain construction for improved power storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 387, 123662 (2020).
Zhang, Y. et al. Enhanced discharged effectivity and excessive power density at elevated temperature in polymer dielectric through manipulating leisure habits. CCS Chem. 2, 1169–1177 (2020).
Tang, Y. et al. Crosslinked dielectric supplies for high-temperature capacitive power storage. J. Mater. Chem. A 9, 10000–10011 (2021).
Yang, M., Zhou, L., Li, X., Ren, W. & Shen, Y. Polyimides physical-crosslinked by fragrant molecules exhibt ultrahigh power deneity at 200 °C. Adv. Mater. 35, e2302392 (2023).
Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric power storage. Nat. Commun. 11, 3919 (2020).
Dong, J. et al. A facile in situ surface-functionalization strategy to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive efficiency. Adv. Funct. Mater. 31, 2102644 (2021).
Bi, Okay. et al. Ultrafine core-shell BaTiO3@SiO2 constructions for nanocomposite capacitors with excessive power density. Nano Power 51, 513–523 (2018).
Zhou, Y. et al. A scalable, high-throughput, and environmentally benign strategy to polymer dielectrics exhibiting considerably improved capacitive efficiency at excessive temperatures. Adv. Mater. 30, 1805672 (2018).
Dong, J. et al. Enhancing high-temperature capacitor efficiency of polymer nanocomposites by adjusting the power degree construction within the micro-/meso-scopic interface area. Nano Power 99, 107314 (2022).
Azizi, A. et al. Excessive-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric supplies. Adv. Mater. 29, 1701864 (2017).
Liu, G. et al. Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature power storage dielectrics. Chem. Eng. J. 389, 124443 (2020).
Liu, F. H. et al. Excessive-energy-density dielectric polymer nanocomposites with trilayered structure. Adv. Funct. Mater. 27, 1606292 (2017).
Cheng, S. et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive power storage. Power Storage Mater. 42, 445–453 (2021).
Ren, L. et al. Excessive-temperature high-energy-density dielectric polymer nanocomposites using inorganic core–shell nanostructured nanofillers. Adv. Power Mater. 11, 2101297 (2021).
Pan, Z., Zhai, J. & Shen, B. Multilayer hierarchical interfaces with excessive power density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5, 15217–15226 (2017).
Liu, H. et al. Single-crystalline BaZr0.2Ti0.8O3 membranes enabled excessive power density in PEI-based composites for high-temperature electrostatic capacitors. Adv. Mater. 35, 2300962 (2023).
Ren, W. et al. Scalable ultrathin all-organic polymer dielectric movies for high-temperature capacitive power storage. Adv. Mater. 34, 2207421 (2022).
Zhang, B. et al. Superior high-temperature power density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater. 33, 2210050 (2023).
Zhou, Y., Zhu, Y., Xu, W. & Wang, Q. Molecular lure engineering permits superior high-temperature capacitive power storage efficiency in all-organic composite at 200 °C. Adv. Power Mater. 13, 2203961 (2023).
Liao, R.-J., Zhou, T.-C., George, C. & Yang, L.-J. An area cost trapping mannequin and its parameters in polymeric materials. Acta Phys. Sin. 61, 017201 (2012).
Sarjeant, W. J., Zirnheld, J. & MacDougall, F. W. Capacitors. IEEE Trans. Plasma Sci. 26, 1368–1392 (1998).
Ho, J. S. & Greenbaum, S. G. Polymer capacitor dielectrics for top temperature functions. ACS Appl. Mater. Interfaces 10, 29189–29218 (2018).
Ameduri, B. From vinylidene fluoride (VDF) to the functions of VDF-containing polymers and copolymers: latest developments and future traits. Chem. Rev. 109, 6632–6686 (2009).
Wu, C. et al. Versatile temperature-invariant polymer dielectrics with massive bandgap. Adv. Mater. 32, 2000499 (2020).
Wu, C. et al. Versatile cyclic-olefin with enhanced dipolar leisure for harsh situation electrification. Proc. Natl Acad. Sci. USA 118, e2115367118 (2021).
Deshmukh, A. A. et al. Versatile polyolefin dielectric by strategic design of natural modules for harsh situation electrification. Power Environ. Sci. 15, 1307–1314 (2022).
Chen, J. et al. Ladderphane copolymers for high-temperature capacitive power storage. Nature 615, 62–66 (2023).
Dong, J. et al. Scalable polyimide-organosilicate hybrid movies for high-temperature capacitive power storage. Adv. Mater. 35, 2211487 (2023).
Dai, Z. et al. Scalable polyimide-poly(amic acid) copolymer primarily based nanocomposites for high-temperature capacitive power storage. Adv. Mater. 34, 2101976 (2021).
Wu, C. et al. Rational design of all-organic versatile high-temperature polymer dielectrics. Matter 5, 2615–2623 (2022).
Kim, G. H. et al. Excessive thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).
Zhang, Q. et al. Excessive-temperature polymers with record-high breakdown energy enabled by rationally designed chain-packing habits in blends. Matter 4, 2448–2459 (2021).
Liu, Okay. et al. Realizing enhanced power density in ternary polymer blends by intermolecular construction design. Chem. Eng. J. 446, 136980 (2022).
Chen, Z. et al. Ultrahigh energy-density versatile dielectric movies achieved by self-bundled polymer nanocluster in necklace-like association. Power Storage Mater. 33, 1–10 (2020).
Huang, X. Y. et al. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R 142, 100577 (2020).
Kumanek, B. & Janas, D. Thermal conductivity of carbon nanotube networks: a overview. J. Mater. Sci. 54, 7397–7427 (2019).
Xiao, M. & Du, B. X. Evaluation of excessive thermal conductivity polymer dielectrics for electrical insulation. Excessive. Volt. 1, 34–42 (2016).
Huang, X., Jiang, P. & Tanaka, T. A overview of dielectric polymer composites with excessive thermal conductivity. IEEE Electr. Insul. Magazine. 27, 8–16 (2011).
Shen, Z. et al. Part-field mannequin of electrothermal breakdown in versatile high-temperature nanocomposites beneath excessive circumstances. Adv. Power Mater. 8, 1800509 (2018).
Wang, S. et al. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano 16, 13612–13656 (2022).
Lewis, T. J. Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1, 812–825 (1994).
Lewis, T. J. Interfaces are the dominant function of dielectrics on the nanometric degree. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004).
Tanaka, T., Kozako, M., Fuse, N. & Ohki, Y. Proposal of a multi-core mannequin for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005).
Baer, E. & Zhu, L. fiftieth anniversary perspective: dielectric phenomena in polymers and multilayered dielectric movies. Macromolecules 50, 2239–2256 (2017).
Niu, Y. et al. Considerably enhancing the discharge effectivity of sandwich-structured polymer dielectrics at elevated temperature by constructing service blocking interface. Nano Power 97, 107215 (2022).
Roscow, J. I., Bowen, C. R. & Almond, D. P. Breakdown within the case for supplies with big permittivity? ACS Power Lett. 2, 2264–2269 (2017).
Bai, H. R. et al. Interfacial polarization regulation of ultrathin 2D nanosheets inducing excessive power storage density of polymer-based nanocomposite with reverse gradient structure. Power Storage Mater. 46, 503–511 (2022).
Zhang, X. et al. Ultrahigh power density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819–824 (2015).
Zhang, X. et al. Big power density and improved discharge effectivity of solution-processed polymer nanocomposites for dielectric power storage. Adv. Mater. 28, 2055–2061 (2016).
Solar, L. et al. Uneven trilayer all‐polymer dielectric composites with simultaneous excessive effectivity and excessive power density: a novel design concentrating on for superior power storage capacitors. Adv. Funct. Mater. 31, 2100280 (2021).
Wang, Y. et al. Considerably enhanced breakdown energy and power density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015).
Peng, S. et al. Direct detection of native electrical polarization within the interfacial area in ferroelectric polymer nanocomposites. Adv. Mater. 31, 1807722 (2019).
Zhang, T. et al. A extremely scalable dielectric metamaterial with superior capacitor efficiency over a broad temperature. Sci. Adv. 6, eaax6622 (2020).
Chen, X. et al. Topological construction enhanced nanostructure of excessive temperature polymer exhibiting greater than ten instances enhancement of dipolar response. Nano Power 88, 106225 (2021).
Li, L. et al. Vital enhancements in dielectric fixed and power density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 33, 2102392 (2021).
Marwat, M. A. et al. Ultrahigh power density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3. Power Storage Mater. 31, 492–504 (2020).
Zhou, Y. et al. Interface-modulated nanocomposites primarily based on polypropylene for high-temperature power storage. Power Storage Mater. 28, 255–263 (2020).
Huang, C. et al. Double enhanced power storage density through polarization gradient design in ferroelectric poly(vinylidene fluoride)-based nanocomposites. Chem. Eng. J. 411, 128585 (2021).
Zheng, M. S. et al. Improved dielectric, tensile and power storage properties of floor rubberized BaTiO3/polypropylene nanocomposites. Nano Power 48, 144–151 (2018).
Chen, S. N. et al. Polymer-based dielectric nanocomposites with excessive power density through utilizing pure sepiolite nanofibers. Chem. Eng. J. 401, 126095 (2020).
Liu, B. et al. Excessive power density and discharge effectivity polypropylene nanocomposites for potential high-power capacitor. Power Storage Mater. 27, 443–452 (2020).
Chen, J. et al. Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical power storage. Sci. Bull. 67, 609–618 (2021).
Huang, Y., Huang, X., Schadler, L. S., He, J. & Jiang, P. Core@ double-shell structured nanocomposites: a path to excessive dielectric fixed and low loss materials. ACS Appl. Mater. Interfaces 8, 25496–25507 (2016).
Xu, W. et al. Bioinspired polymer nanocomposites exhibit big power density and excessive effectivity at excessive temperature. Small 15, 1901582 (2019).
Liu, J. et al. Optimizing electrical discipline distribution through tuning cross-linked level dimension for enhancing the dielectric properties of polymer nanocomposites. Nanoscale 12, 12416–12425 (2020).
Guo, M. et al. Excessive-energy-density ferroelectric polymer nanocomposites for capacitive power storage: enhanced breakdown energy and improved discharge effectivity. Mater. As we speak 29, 49–67 (2019).
Wang, R. et al. Designing tailor-made mixtures of structural models in polymer dielectrics for high-temperature capacitive power storage. Nat. Commun. 14, 2406 (2023).
Yang, M. et al. Quantum dimension impact to induce colossal high-temperature power storage density and effectivity in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).
Shen, Z.-H. et al. Part-field modeling and machine studying of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1843 (2019).
Martin, L. W. & Rappe, A. M. Skinny-film ferroelectric supplies and their functions. Nat. Rev. Mater. 2, 16087 (2016).
Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).
Das, S. et al. Commentary of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Yadav, A. Okay. et al. Commentary of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Yang, J. et al. Spontaneous electric-polarization topology in confined ferroelectric nematics. Nat. Commun. 13, 7806 (2022).
Zhang, H.-Y. et al. Commentary of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).
Guo, M. et al. A pyrotoroidic transition in ferroelectric polymer. Matter 5, 3041–3052 (2022).
Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).
Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).
Aramberri, H., Fedorova, N. S. & Íñiguez, J. Ferroelectric/paraelectric superlattices for power storage. Sci. Adv. 8, eabn4880 (2022).
Liu, Y. et al. Part-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage efficiency. Adv. Mater. 34, 2108772 (2022).
Ni, B., Shi, Y. & Wang, X. The sub-nanometer scale as a brand new focus in nanoscience. Adv. Mater. 30, 1802031 (2018).
Liu, Q. & Wang, X. Polyoxometalate clusters: sub-nanometer constructing blocks for building of superior supplies. Matter 2, 816–841 (2020).
Zhang, S., Shi, W. & Wang, X. Locking unstable natural molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).
Lu, Q. C. & Wang, X. Latest progress of sub-nanometric supplies in photothermal power conversion. Adv. Sci. 9, 2104225 (2022).
Yang, M. et al. Sub-nanowires enhance superior capacitive power storage efficiency of polymer composites at excessive temperatures. Adv. Funct. Mater. 33, 2214100 (2023).
Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Superior dielectric polymers for power storage. Power Storage Mater. 44, 29–47 (2022).
Zhang, Y. et al. Self-healing of supplies beneath excessive electrical stress. Matter 3, 989–1008 (2020).