Stranks, S. D. et al. Electron–gap diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Herz, L. M. Cost-carrier mobilities in metallic halide perovskites: basic mechanisms and limits. ACS Power Lett. 2, 1539–1548 (2017).
Zhu, H., Miyata, Okay., Fu, Y., Wang, J. & Joshi, P. P. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1414 (2016).
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Niesner, D. et al. Big Rashba splitting in CH3NH3PbBr3 natural–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).
Zhai, Y. et al. Big Rashba splitting in 2D natural–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).
Ni, Z. et al. Resolving spatial and energetic distributions of entice states in metallic halide perovskite photo voltaic cells. Science 367, 1352–1358 (2020).
Steirer, Okay. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Power Lett. 1, 360–366 (2016).
Lin, Okay. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).
Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite photo voltaic cells with efficiencies >18%. Science 365, 591–595 (2019).
Zhu, X. Y. & Podzorov, V. Cost carriers in hybrid natural–inorganic lead halide perovskites is perhaps protected as massive polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).
Zheng, F. & Wang, L. Giant polaron formation and its impact on electron transport in hybrid perovskites. Power Environ. Sci. 12, 1219–1230 (2019).
Miyata, Okay., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and enormous polaron formation. Sci. Adv. 3, e1701469 (2017).
Puppin, M. et al. Proof of huge polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).
Guzelturk, B. et al. Visualization of dynamic polaronic pressure fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).
Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite photo voltaic cells. Nano Lett. 14, 2584–2590 (2014).
Frost, J. M., Butler, Okay. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite photo voltaic cells. APL Mater. 2, 081506 (2014).
Liu, S. et al. Ferroelectric area wall induced band hole discount and cost separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).
Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).
Hoque, M. N. F. et al. Polarization and dielectric examine of methylammonium lead iodide skinny movie to disclose its nonferroelectric nature below photo voltaic cell working situations. ACS Power Lett. 1, 142–149 (2016).
Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).
Schulz, A. D. et al. On the ferroelectricity of CH3NH3PbI3 perovskites. Nat. Mater. 18, 1050 (2019).
Miyata, Okay. & Zhu, X.-Y. Ferroelectric massive polarons. Nat. Mater. 17, 379–381 (2018).
Wang, F. et al. Solvated electrons in solids—ferroelectric massive polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).
Huang, H. Ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).
Morris, M. R., Pendlebury, S. R., Hong, J., Dunn, S. & Durrant, J. R. Impact of inside electrical fields on cost service dynamics in a ferroelectric materials for photo voltaic vitality conversion. Adv. Mater. 28, 7123–7128 (2016).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Zhang, J., Li, C., Chen, M. & Huang, Okay. Actual-time remark of ion migration in halide perovskite by photoluminescence imaging microscopy. J. Phys. D 54, 044002 (2021).
Zhang, T. et al. Understanding the connection between ion migration and the anomalous hysteresis in high-efficiency perovskite photo voltaic cells: a recent perspective from halide substitution. Nano Power 26, 620–630 (2016).
Zhong, Y., Hufnagel, M., Thelakkat, M., Li, C. & Huettner, S. Position of PCBM within the suppression of hysteresis in perovskite photo voltaic cells. Adv. Funct. Mater. 30, 1908920 (2020).
Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).
Tsai, H. et al. A delicate and strong thin-film X-ray detector utilizing 2D-layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).
Miyata, Okay. et al. Giant polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).
Park, M. et al. Excited-state vibrational dynamics towards the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).
Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the digital and energetic landscapes of perovskite photo voltaic cells: excessive native cost service mobility, lowered recombination, and very shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for environment friendly planar heterojunction photo voltaic cells. Power Environ. Sci. 7, 982–988 (2014).
Schlaus, A. P. et al. How lasing occurs in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019).
Miyata, Okay. et al. Liquid-like dielectric response is an origin of lengthy polaron lifetime exceeding 10 μs in lead bromide perovskites. J. Chem. Phys. 152, 084704 (2020).
Abdelkefi, H., Khemakhem, H., Vélu, G., Carru, J. C. & Von der Mühll, R. Dielectric properties and ferroelectric part transitions in BaxSr1−xTiO3 stable resolution. J. Alloys Compd 399, 1–6 (2005).
Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric examine of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).
Wilson, J. N., Frost, J. M., Wallace, S. Okay. & Walsh, A. Dielectric and ferroic properties of metallic halide perovskites. APL Mater. 7, 010901 (2019).
Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).
Glazounov, A. E. & Tagantsev, A. Okay. Direct proof for Vögel–Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 73, 856–858 (1998).
Viehland, D., Li, J. F., Jang, S. J., Cross, L. E. & Wuttig, M. Dipolar-glass mannequin for lead magnesium niobate. Phys. Rev. B 43, 8316–8320 (1991).
Westphal, V., Kleemann, W. & Glinchuk, M. D. Diffuse part transitions and random-field-induced area states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).
Krogstad, M. J. et al. The relation of native order to materials properties in relaxor ferroelectrics. Nat. Mater. 17, 718–724 (2018).
Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale native construction in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).
Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).
Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of cost carriers in metallic halide perovskites. Nanoscale 13, 10239–10265 (2021).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program undertaking for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Garrity, Okay. F., Bennett, J. W., Rabe, Okay. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).
Kang, B. & Biswas, Okay. Exploring polaronic, excitonic constructions and luminescence in Cs4PbBr6/CsPbBr3. J. Phys. Chem. Lett. 9, 830–836 (2018).