Sunday, January 29, 2023
HomeNanotechnologyPhotocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites

Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites


  • Stranks, S. D. et al. Electron–gap diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Herz, L. M. Cost-carrier mobilities in metallic halide perovskites: basic mechanisms and limits. ACS Power Lett. 2, 1539–1548 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, H., Miyata, Okay., Fu, Y., Wang, J. & Joshi, P. P. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1414 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Niesner, D. et al. Big Rashba splitting in CH3NH3PbBr3 natural–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article 

    Google Scholar
     

  • Zhai, Y. et al. Big Rashba splitting in 2D natural–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article 

    Google Scholar
     

  • Ni, Z. et al. Resolving spatial and energetic distributions of entice states in metallic halide perovskite photo voltaic cells. Science 367, 1352–1358 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Steirer, Okay. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Power Lett. 1, 360–366 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Okay. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite photo voltaic cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. Y. & Podzorov, V. Cost carriers in hybrid natural–inorganic lead halide perovskites is perhaps protected as massive polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, F. & Wang, L. Giant polaron formation and its impact on electron transport in hybrid perovskites. Power Environ. Sci. 12, 1219–1230 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Miyata, Okay., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and enormous polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article 

    Google Scholar
     

  • Puppin, M. et al. Proof of huge polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guzelturk, B. et al. Visualization of dynamic polaronic pressure fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite photo voltaic cells. Nano Lett. 14, 2584–2590 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Frost, J. M., Butler, Okay. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite photo voltaic cells. APL Mater. 2, 081506 (2014).

    Article 

    Google Scholar
     

  • Liu, S. et al. Ferroelectric area wall induced band hole discount and cost separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article 

    Google Scholar
     

  • Hoque, M. N. F. et al. Polarization and dielectric examine of methylammonium lead iodide skinny movie to disclose its nonferroelectric nature below photo voltaic cell working situations. ACS Power Lett. 1, 142–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schulz, A. D. et al. On the ferroelectricity of CH3NH3PbI3 perovskites. Nat. Mater. 18, 1050 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Miyata, Okay. & Zhu, X.-Y. Ferroelectric massive polarons. Nat. Mater. 17, 379–381 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Solvated electrons in solids—ferroelectric massive polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. Ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).

  • Morris, M. R., Pendlebury, S. R., Hong, J., Dunn, S. & Durrant, J. R. Impact of inside electrical fields on cost service dynamics in a ferroelectric materials for photo voltaic vitality conversion. Adv. Mater. 28, 7123–7128 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Li, C., Chen, M. & Huang, Okay. Actual-time remark of ion migration in halide perovskite by photoluminescence imaging microscopy. J. Phys. D 54, 044002 (2021).

  • Zhang, T. et al. Understanding the connection between ion migration and the anomalous hysteresis in high-efficiency perovskite photo voltaic cells: a recent perspective from halide substitution. Nano Power 26, 620–630 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y., Hufnagel, M., Thelakkat, M., Li, C. & Huettner, S. Position of PCBM within the suppression of hysteresis in perovskite photo voltaic cells. Adv. Funct. Mater. 30, 1908920 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, H. et al. A delicate and strong thin-film X-ray detector utilizing 2D-layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).

  • Miyata, Okay. et al. Giant polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article 

    Google Scholar
     

  • Park, M. et al. Excited-state vibrational dynamics towards the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Article 

    Google Scholar
     

  • Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the digital and energetic landscapes of perovskite photo voltaic cells: excessive native cost service mobility, lowered recombination, and very shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for environment friendly planar heterojunction photo voltaic cells. Power Environ. Sci. 7, 982–988 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Schlaus, A. P. et al. How lasing occurs in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019).

    Article 

    Google Scholar
     

  • Miyata, Okay. et al. Liquid-like dielectric response is an origin of lengthy polaron lifetime exceeding 10 μs in lead bromide perovskites. J. Chem. Phys. 152, 084704 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abdelkefi, H., Khemakhem, H., Vélu, G., Carru, J. C. & Von der Mühll, R. Dielectric properties and ferroelectric part transitions in BaxSr1−xTiO3 stable resolution. J. Alloys Compd 399, 1–6 (2005).

  • Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric examine of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, J. N., Frost, J. M., Wallace, S. Okay. & Walsh, A. Dielectric and ferroic properties of metallic halide perovskites. APL Mater. 7, 010901 (2019).

    Article 

    Google Scholar
     

  • Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Glazounov, A. E. & Tagantsev, A. Okay. Direct proof for Vögel–Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 73, 856–858 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Viehland, D., Li, J. F., Jang, S. J., Cross, L. E. & Wuttig, M. Dipolar-glass mannequin for lead magnesium niobate. Phys. Rev. B 43, 8316–8320 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Westphal, V., Kleemann, W. & Glinchuk, M. D. Diffuse part transitions and random-field-induced area states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Krogstad, M. J. et al. The relation of native order to materials properties in relaxor ferroelectrics. Nat. Mater. 17, 718–724 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale native construction in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of cost carriers in metallic halide perovskites. Nanoscale 13, 10239–10265 (2021).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program undertaking for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Garrity, Okay. F., Bennett, J. W., Rabe, Okay. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

  • Kang, B. & Biswas, Okay. Exploring polaronic, excitonic constructions and luminescence in Cs4PbBr6/CsPbBr3. J. Phys. Chem. Lett. 9, 830–836 (2018).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments