Alsaab HO, Sau S, Alzhrani R, Tatiparti Ok, Bhise Ok, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for most cancers immunotherapy: mechanism, mixtures, and medical consequence. Entrance Pharmacol. 2017;8:561.
Sui H, Ma N, Wang Y, Li H, Liu X, Su Y, Yang J. Anti-PD-1/PD-L1 remedy for non-small-cell lung most cancers: towards customized drugs and mixture methods. J Immunol Res. 2018;2018:6984948.
Hamanishi J, Mandai M, Matsumura N, Abiko Ok, Baba T, Konishi I. PD-1/PD-L1 blockade in most cancers remedy: views and points. Int J Clin Oncol. 2016;21(3):462–73.
Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in most cancers. Mol Cell. 2019;76(3):359–70.
Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Chilly tumors: a therapeutic problem for immunotherapy. Entrance Immunol. 2019;10:168.
Duan Q, Zhang H, Zheng J, Zhang L. Turning chilly into sizzling: firing up the tumor microenvironment. Traits Most cancers. 2020;6(7):605–18.
Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up the warmth on non-immunoreactive tumours: alternatives for medical growth. Lancet Oncol. 2020;21(9):e419–30. https://doi.org/10.1016/S1470-2045(20)30234-5.
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumor-associated macrophages inhibits phagocytosis and tumor immunity. Nature. 2017;545(7655):495–9.
Chen L, Cao MF, Xiao JF, Ma QH, Zhang H, Cai RL, Miao JY, Wang WY, Zhang H, Luo M, Ping YF, Yao XH, Cui YH, Zhang X, Bian XW. Stromal PD-1+ tumor-associated macrophages predict poor prognosis in lung adenocarcinoma. Hum Pathol. 2020;97:68–79.
Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and tumor cell cross-talk is key for lung tumor development: we have to discuss. Entrance Oncol. 2020;10:324.
Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Wealthy JN, Bao S. Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant development. Nat Cell Biol. 2015;17(2):170–82.
Chanmee T, Ontong P, Konno Ok, Itano N. Tumor-associated macrophages as main gamers within the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-associated macrophages in human breast, colorectal, lung ovarian and prostate cancers. Entrance Oncol. 2020;10: 566511.
Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. The impact of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.
Kono Y, Saito H, Miyauchi W, Shimizu S, Fujiwara Y. Elevated PD-1-positive macrophages within the tissue of gastric most cancers are intently related to poor prognosis in gastric most cancers sufferers. BMC Most cancers. 2020;20:175.
Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 remedy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Most cancers Med. 2018;7(6):2654–64.
Rao G, Latha Ok, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, Wei J, Fuller GN, Benavides F, Sonabend AM, Lengthy J, Li S, Curran M, Heimberger AB. Anti-PD-1 induces M1 polarization within the glioma microenvironment and exerts therapeutic efficacy within the absence of CD8 cytotoxic T cells. Clin Most cancers Res. 2020;26(17):4699–712.
Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, Zhai J, Mai S, Jiang J, Wang Z, Wu H, Cai Ok. Past T cells: understanding the position of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019:1919082.
Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, Schalper KA, Rimm DL. Immune Cell PD-L1 colocalizes with macrophages and is related to consequence in PD-1 pathway blockade remedy. Clin Most cancers Res. 2020;26(4):970–7.
Zhang W, Liu Y, Yan Z, Yang H, Solar W, Yao Y, Chen Y, Jiang R. IL-6 promotes PD-L1 expression in monocytes and macrophages by lowering protein tyrosine phosphatase receptor sort O expression in human hepatocellular carcinoma. J Immunother Most cancers. 2020;8(1): e000285.
Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast most cancers through up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and selling CD8+ T cell exclusion. J Exp Clin Most cancers Res. 2021;40(1):4.
Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C, Graham RP, Smoot RL, Dong H, Ilyas S. Concentrating on tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Make investments. 2020;130(10):5380–96.
McCord R, Bolen CR, Koeppen H, Kadel EE third, Oestergaard MZ, Nielsen T, Sehn LH, Venstrom JM. PD-L1 and tumor-associated macrophages in de novo DLBCL. Blood Adv. 2019;3(4):531–40.
Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114(5):1117–22.
Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW. Programmed cell demise ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Most cancers Immunol Res. 2018;6(10):1260–73.
Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M. PD-L1-mediated immunosuppression in glioblastoma is related to the infiltration and M2-polarization of tumor-associated macrophages. Entrance Immunol. 2020;11: 588552.
Du SS, Chen GW, Yang P, Chen YX, Hu Y, Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, Fan J, Zeng ZC. Radiation remedy promotes hepatocellular carcinoma immune cloaking through PD-L1 upregulation induced by cGAS-STING activation. Int J Radiat Oncol Biol Phys. 2022;112(5):1243–55.
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Enchancment of the anticancer efficacy of PD-1/PD-L1 blockade through mixture remedy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24.
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as remedy targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.
Zhao R, Wan Q, Wang Y, Wu Y, Xiao S, Li Q, Shen X, Zhuang W, Zhou Y, Xia L, Music Y, Chen Y, Yang H, Wu X. M1-like TAMs are required for the efficacy of PD-L1/PD-1 blockades in gastric most cancers. Oncoimmunology. 2020;10(1):1862520.
Solar NY, Chen YL, Wu WY, Lin HW, Chiang YC, Chang CF, Tai YJ, Hsu HC, Chen CA, Solar WZ, Cheng WF. Blockade of PD-L1 enhances most cancers immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancers. 2019;11(9):1400. https://doi.org/10.3390/cancers11091400.
Huang L, Li Y, Du Y, Zhang Y, Wang X, Ding Y, Yang X, Meng F, Tu J, Luo L, Solar C. Delicate photothermal remedy potentiates anti-PD-L1 remedy for immunologically chilly tumors through an all-in-one and all-in-control technique. Nat Commun. 2019;10(1):4871.
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles along with IDO inhibitor improve most cancers photothermal remedy and immunotherapy. Adv Sci. 2018;5:1700891.
Zhang X, Du J, Guo Z, Yu J, Gao Q, Yin W, Zhu S, Gu Z, Zhao Y. Environment friendly close to infrared mild triggered nitric oxide launch nanocomposites for sensitizing delicate photothermal remedy. Adv Sci. 2019;6:1801122.
Yang Y, Zhu W, Dong Z, Chao Y, Xu L, Chen M, Liu Z. 1D coordination polymer nanofibers for low-temperature photothermal remedy. Adv Mater. 2017. https://doi.org/10.1002/adma.201703588.
Li Z, Deng J, Solar J, Ma Y. Hyperthermia concentrating on the tumor microenvironment facilitates immune checkpoint inhibitors. Entrance Immunol. 2020;11: 595207.
Chu KF, Dupuy DE. Thermal ablation of tumours: organic mechanisms and advances in remedy. Nat Rev Most cancers. 2014;14(3):199–208.
Li Y, He L, Dong H, Liu Y, Wang Ok, Li A, Ren T, Shi D, Li Y. Fever-inspired immunotherapy primarily based on photothermal CpG nanotherapeutics: the essential position of delicate warmth in regulating tumor microenvironment. Adv Sci (Weinh). 2018;5(6):1700805.
Yi X, Duan QY, Wu FG. Low-temperature photothermal remedy: methods and purposes. Analysis (Wash D C). 2021;2021:9816594.
Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates delicate photothermal remedy for tumor ablation. Asian J Pharm Sci. 2021;16(6):738–61.
Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of each BTK and ITK. Proc Natl Acad Sci USA. 2015;112(9):E966–72.
Li DC, Zhang YC, Xu J, Yoshino F, Xu HZ, Chen X, Zhao L. Floor-engineered carbon nanohorns as a theranostic nanodevice for photoacoustic imaging and efficient radiochemotherapy of most cancers. Carbon. 2021;180:185–96.
Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga Ok, Kokai F, Takahashi Ok. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309: 165e170.
Li TF, Li Ok, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Management Launch. 2017;268:128–46.
Lyons AB, Blake SJ, Doherty KV. Stream cytometric evaluation of cell division by dilution of CFSE and associated dyes. Curr Protoc Cytom. 2013;9:unit911–1911.
Li TF, Li Ok, Zhang Q, Wang C, Yue Y, Chen Z, Yuan SJ, Liu X, Wen Y, Han M, Komatsu N, Xu YH, Zhao L, Chen X. Dendritic cell-mediated supply of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52.
Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy Ok, Liu Y, Turk MJ, Thedieck Ok, Hurez V, Li R, Vadlamudi R, Curiel TJ. Tumor-intrinsic PD-L1 alerts regulate cell development, pathogenesis, and autophagy in ovarian most cancers and melanoma. Most cancers Res. 2016;76(23):6964–74.
Chen C, Li S, Xue J, Qi M, Liu X, Huang Y, Hu J, Dong H, Ling Ok. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast most cancers. JCI Perception. 2021;6(8): e131458.
Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Construction, properties, functionalization, and purposes of carbon nanohorns. Chem Rev. 2016;116(8):4850–83.
Pagona G, Tagmatarchis N, Fan J, Yudasaka M, Iijima S. Cone-end functionalization of carbon nanohorns. Chem Mater. 2006;18:3918–20.
Jiang BP, Hu LF, Shen XC, Ji SC, Shi ZJ, Liu CJ, Zhang L, Liang H. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic remedy. ACS Appl Mater Interfaces. 2014;6:18008–17.
Zhang M, Murakami T, Ajima Ok, Tsuchida Ok, Sandanayaka ASD, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic most cancers phototherapy. P Natl Acad Sci USA. 2008;105:14773–8.
Chen D, Wang C, Nie X, Li S, Li R, Guan M, Liu Z, Chen C, Wang C, Shu C, Wan L. Photoacoustic imaging guided near-infrared photothermal remedy utilizing extremely water-dispersible single-walled carbon nanohorns as theranostic brokers. Adv Funct Mater. 2014;24:6621–8.
Chechetka SA, Yuba E, Kono Ok, Yudasaka M, Bianco A, Miyako E. Magnetically and near-infrared light-powered supramolecular nanotransporters for the distant management of enzymatic reactions. Angew Chem Int Ed. 2016;55:6476–81.
Lin ZX, Jiang BP, Liang JZ, Wen CC, Shen XC. Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated most cancers phototheranostics. Carbon. 2019;143:814–27.
Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of most cancers stemness by near-infrared-light-activatable nanocomplexes. Nat Commun. 2020;11:4117.
Cisneros BT, Legislation JJ, Matson ML, Azhdarinia A, Sevick-Muraca EM, Wilson LJ. Secure confinement of positron emission tomography and magnetic resonance brokers inside carbon nanotubes for bimodal imaging. Nanomedicine. 2014;9:2499–509.
Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga Ok, Kokai F, Takahashi Ok. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309:165–70.
Moreno-Lanceta A, Medrano-Bosch M, Melgar-Lesmes P. Single-walled carbon nanohorns as promising nanotube-derived supply programs to deal with most cancers. Pharmaceutics. 2020;12:850.
Zak KM, Grudnik P, Guzik Ok, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Structural foundation for small molecule concentrating on of the programmed demise ligand 1 (PD-L1). Oncotarget. 2016;7(21):30323–35.
Ashizawa T, Iizuka A, Tanaka E, Kondou R, Miyata H, Maeda C, Sugino T, Yamaguchi Ok, Ando T, Ishikawa Y, Ito M, Akiyama Y. Antitumor exercise of the PD-1/PD-L1 binding inhibitor BMS-202 within the humanized MHC-double knockout NOG mouse. Biomed Res. 2019;40(6):243–50.
Guzik Ok, Zak KM, Grudnik P, Magiera Ok, Musielak B, Törner R, Skalniak L, Dömling A, Dubin G, Holak TA. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interplay through transiently induced protein states and dimerization of PD-L1. J Med Chem. 2017;60(13):5857–67.