Tuesday, September 12, 2023
HomeNanotechnologyOxyhaemoglobin saturation NIR-IIb imaging for assessing most cancers metabolism and predicting the...

Oxyhaemoglobin saturation NIR-IIb imaging for assessing most cancers metabolism and predicting the response to immunotherapy


  • Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from mobile mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article 

    Google Scholar
     

  • Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and most cancers biology. Cell 168, 657–669 (2017).

    Article 

    Google Scholar
     

  • Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in most cancers development and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Heterogeneity of tumor-induced gene expression modifications within the human metabolic community. Nat. Biotechnol. 31, 522–529 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism within the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor development of non-small-cell lung most cancers in preclinical fashions. Nat. Med. 22, 1108–1119 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation via inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gui, D. Y. et al. Atmosphere dictates dependence on mitochondrial advanced I for NAD+ and aspartate manufacturing and determines most cancers cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).

    Article 
    CAS 

    Google Scholar
     

  • DeBerardinis, R. J. & Chandel, N. S. Fundamentals of most cancers metabolism. Sci. Adv. 2, e1600200 (2016).

    Article 

    Google Scholar
     

  • Davidson, S. M. et al. Atmosphere impacts the metabolic dependencies of Ras-driven non-small cell lung most cancers. Cell Metab. 23, 517–528 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Weinberg, F. et al. Mitochondrial metabolism and ROS technology are important for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rofstad, E. Ok., DeMuth, P., Fenton, B. M. & Sutherland, R. M. 31P nuclear magnetic resonance spectroscopy research of tumor power metabolism and its relationship to intracapillary oxyhemoglobin saturation standing and tumor hypoxia. Most cancers Res. 48, 5440–5446 (1988).

    CAS 

    Google Scholar
     

  • Vaupel, P., Kallinowski, F. & Okunieff, P. Blood circulate, oxygen and nutrient provide, and metabolic microenvironment of human tumors: a assessment. Most cancers Res. 49, 6449–6465 (1989).

    CAS 

    Google Scholar
     

  • Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, M., Tang, Y. & Yao, J. Photoacoustic tomography of blood oxygenation: a mini assessment. Photoacoustics 10, 65–73 (2018).

    Article 

    Google Scholar
     

  • Hong, G., Antaris, A. L. & Dai, H. Close to-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Excessive-sensitivity imaging of time-domain near-infrared gentle transducer. Nat. Photonics 13, 525–531 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bruns, O. T. et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, B. et al. A phosphorescent probe for in vivo imaging within the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Diao, S. et al. Fluorescence imaging in vivo at wavelengths past 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hong, G. et al. By way of-skull fluorescence imaging of the mind in a brand new near-infrared window. Nat. Photonics 8, 723–730 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-D. et al. Traumatic mind harm imaging within the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872–6879 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. J. J. et al. Direct proof for coupled floor and focus quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article 
    CAS 

    Google Scholar
     

  • He, S. et al. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT distinction by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano Lett. 17, 4873–4880 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic techniques. Nano Res. 13, 1281–1294 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for organic imaging past 1500 nm. Nat. Commun. 8, 737 (2017).

    Article 

    Google Scholar
     

  • Wang, F. et al. Mild-sheet microscopy within the near-infrared II window. Nat. Strategies 16, 545–552 (2019).

    Article 

    Google Scholar
     

  • Mendrik, A. et al. Automated segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans. Med. Phys. 37, 2956–2966 (2010).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging sign of a tumor. J. Am. Chem. Soc. 143, 1846–1853 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and present medical, biologic, and molecular facets. J. Natl. Most cancers Inst. 93, 266–276 (2001).

    Article 

    Google Scholar
     

  • Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impression on most cancers remedy. Most cancers Metastasis Rev. 5, 313–341 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Yao, J., Maslov, Ok. I., Zhang, Y., Xia, Y. & Wang, L. V. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Decide. 16, 1–12 (2011).

    Article 

    Google Scholar
     

  • Hanahan, D. & Folkman, J. Patterns and rising mechanisms of the angiogenic change throughout tumorigenesis. Cell 86, 353–364 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions within the tumor microenvironment. Traits Cell Biol. 27, 863–875 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mao, Y., Keller, E. T., Garfield, D. H., Shen, Ok. & Wang, J. Stromal cells in tumor microenvironment and breast most cancers. Most cancers Metastasis Rev. 32, 303–315 (2013).

    Article 

    Google Scholar
     

  • Reina-Campos, M., Moscat, J. & Diaz-Meco, M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol. 48, 47–53 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Arneth, B. Tumor microenvironment. Medicina 56, 15 (2020).

    Article 

    Google Scholar
     

  • Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Latest advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and software for bioimaging. Coord. Chem. Rev. 381, 104–134 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Ok. et al. Fluorescence image-guided tumour surgical procedure. Nat. Rev. Bioeng. 1, 161–179 (2023).

    Article 

    Google Scholar
     

  • Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article 

    Google Scholar
     

  • Liu, H.-W. et al. Latest progresses in small-molecule enzymatic fluorescent probes for most cancers imaging. Chem. Soc. Rev. 47, 7140–7180 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Baugh, L. M. et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve illness. Nat. Biomed. Eng. 1, 914–924 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mai, H.-X. et al. Excessive-quality sodium rare-earth fluoride nanocrystals: managed synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative mind tumor imaging. Angew. Chem. Int. Ed. 59, 21049–21057 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ramos-Soto, O. et al. An environment friendly retinal blood vessel segmentation in eye fundus photographs through the use of optimized top-hat and homomorphic filtering. Comput. Strategies Applications Biomed. 201, 105949 (2021).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments