Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from mobile mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).
Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and most cancers biology. Cell 168, 657–669 (2017).
Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).
Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in most cancers development and response to immunotherapy. Nat. Med. 27, 212–224 (2021).
Hu, J. et al. Heterogeneity of tumor-induced gene expression modifications within the human metabolic community. Nat. Biotechnol. 31, 522–529 (2013).
Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism within the tumor microenvironment. Cell Metab. 30, 36–50 (2019).
Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor development of non-small-cell lung most cancers in preclinical fashions. Nat. Med. 22, 1108–1119 (2016).
Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation via inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).
Gui, D. Y. et al. Atmosphere dictates dependence on mitochondrial advanced I for NAD+ and aspartate manufacturing and determines most cancers cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).
DeBerardinis, R. J. & Chandel, N. S. Fundamentals of most cancers metabolism. Sci. Adv. 2, e1600200 (2016).
Davidson, S. M. et al. Atmosphere impacts the metabolic dependencies of Ras-driven non-small cell lung most cancers. Cell Metab. 23, 517–528 (2016).
Weinberg, F. et al. Mitochondrial metabolism and ROS technology are important for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).
Rofstad, E. Ok., DeMuth, P., Fenton, B. M. & Sutherland, R. M. 31P nuclear magnetic resonance spectroscopy research of tumor power metabolism and its relationship to intracapillary oxyhemoglobin saturation standing and tumor hypoxia. Most cancers Res. 48, 5440–5446 (1988).
Vaupel, P., Kallinowski, F. & Okunieff, P. Blood circulate, oxygen and nutrient provide, and metabolic microenvironment of human tumors: a assessment. Most cancers Res. 49, 6449–6465 (1989).
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).
Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).
Li, M., Tang, Y. & Yao, J. Photoacoustic tomography of blood oxygenation: a mini assessment. Photoacoustics 10, 65–73 (2018).
Hong, G., Antaris, A. L. & Dai, H. Close to-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).
Gu, Y. et al. Excessive-sensitivity imaging of time-domain near-infrared gentle transducer. Nat. Photonics 13, 525–531 (2019).
Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).
Bruns, O. T. et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).
Chang, B. et al. A phosphorescent probe for in vivo imaging within the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).
Diao, S. et al. Fluorescence imaging in vivo at wavelengths past 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).
Zhong, Y. et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).
Hong, G. et al. By way of-skull fluorescence imaging of the mind in a brand new near-infrared window. Nat. Photonics 8, 723–730 (2014).
Zhang, X.-D. et al. Traumatic mind harm imaging within the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872–6879 (2016).
Johnson, N. J. J. et al. Direct proof for coupled floor and focus quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).
He, S. et al. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT distinction by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano Lett. 17, 4873–4880 (2017).
Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic techniques. Nano Res. 13, 1281–1294 (2020).
Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for organic imaging past 1500 nm. Nat. Commun. 8, 737 (2017).
Wang, F. et al. Mild-sheet microscopy within the near-infrared II window. Nat. Strategies 16, 545–552 (2019).
Mendrik, A. et al. Automated segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans. Med. Phys. 37, 2956–2966 (2010).
Zhou, H. et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging sign of a tumor. J. Am. Chem. Soc. 143, 1846–1853 (2021).
Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and present medical, biologic, and molecular facets. J. Natl. Most cancers Inst. 93, 266–276 (2001).
Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impression on most cancers remedy. Most cancers Metastasis Rev. 5, 313–341 (1987).
Yao, J., Maslov, Ok. I., Zhang, Y., Xia, Y. & Wang, L. V. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Decide. 16, 1–12 (2011).
Hanahan, D. & Folkman, J. Patterns and rising mechanisms of the angiogenic change throughout tumorigenesis. Cell 86, 353–364 (1996).
Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions within the tumor microenvironment. Traits Cell Biol. 27, 863–875 (2017).
Mao, Y., Keller, E. T., Garfield, D. H., Shen, Ok. & Wang, J. Stromal cells in tumor microenvironment and breast most cancers. Most cancers Metastasis Rev. 32, 303–315 (2013).
Reina-Campos, M., Moscat, J. & Diaz-Meco, M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol. 48, 47–53 (2017).
Arneth, B. Tumor microenvironment. Medicina 56, 15 (2020).
Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).
Xu, J. et al. Latest advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and software for bioimaging. Coord. Chem. Rev. 381, 104–134 (2019).
Wang, Ok. et al. Fluorescence image-guided tumour surgical procedure. Nat. Rev. Bioeng. 1, 161–179 (2023).
Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).
Liu, H.-W. et al. Latest progresses in small-molecule enzymatic fluorescent probes for most cancers imaging. Chem. Soc. Rev. 47, 7140–7180 (2018).
Baugh, L. M. et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve illness. Nat. Biomed. Eng. 1, 914–924 (2017).
Mai, H.-X. et al. Excessive-quality sodium rare-earth fluoride nanocrystals: managed synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).
Liu, Y. et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative mind tumor imaging. Angew. Chem. Int. Ed. 59, 21049–21057 (2020).
Ramos-Soto, O. et al. An environment friendly retinal blood vessel segmentation in eye fundus photographs through the use of optimized top-hat and homomorphic filtering. Comput. Strategies Applications Biomed. 201, 105949 (2021).