Levental, I. & Lyman, E. Regulation of membrane protein construction and performance by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).
Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The thriller of membrane group: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).
Liu, S., Hoess, P. & Ries, J. Tremendous-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, 301–326 (2022).
Baddeley, D. & Bewersdorf, J. Organic perception from super-resolution microscopy: what we will be taught from localization-based pictures. Annu. Rev. Biochem. 87, 965–989 (2018).
Jain, A. et al. Probing mobile protein complexes utilizing single-molecule pull-down. Nature 473, 484–488 (2011).
Chung, J. Okay. et al. Okay-Ras4B stays monomeric on membranes over a variety of floor densities and lipid compositions. Biophys. J. 114, 137–145 (2018).
Kaliszewski, M. J. et al. Quantifying membrane protein oligomerization with fluorescence cross-correlation spectroscopy. Strategies 140–141, 40–51 (2018).
Huang, Y. et al. Molecular foundation for multimerization within the activation of the epidermal development issue receptor. eLife 5, e14107 (2016).
Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Strategies 4, 319–321 (2007).
Low-Nam, S. T. et al. ErbB1 dimerization is promoted by area co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 18, 1244–1249 (2011).
Kusumi, A., Tsunoyama, T. A., Hirosawa, Okay. M., Kasai, R. S. & Fujiwara, T. Okay. Monitoring single molecules at work in dwelling cells. Nat. Chem. Biol. 10, 524–532 (2014).
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Strategies Primers 1, 39 (2021).
Huang, B., Bates, M. & Zhuang, X. Tremendous-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).
Balzarotti, F. et al. Nanometer decision imaging and monitoring of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).
Deguchi, T. et al. Direct commentary of motor protein stepping in dwelling cells utilizing MINFLUX. Science 379, 1010–1015 (2023).
Panda, A. et al. Direct dedication of oligomeric group of integral membrane proteins and lipids from intact customizable bilayer. Nat. Strategies 20, 891–897 (2023).
Sydor, A. M., Czymmek, Okay. J., Puchner, E. M. & Mennella, V. Tremendous-resolution microscopy: from single molecules to supramolecular assemblies. Developments Cell Biol. 25, 730–748 (2015).
Duncan, A. L. et al. Protein crowding and lipid complexity affect the nanoscale dynamic group of ion channels in cell membranes. Sci. Rep. 7, 16647 (2017).
Kiessling, V., Yang, S.-T. & Tamm, L. Okay. Supported lipid bilayers as fashions for learning membrane domains. Curr. Prime. Membr. 75, 1–23 (2015).
Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the floor of dwelling cells. Nat. Cell Biol. 2, 168–172 (2000).
Coffman, V. C. & Wu, J.-Q. Counting protein molecules utilizing quantitative fluorescence microscopy. Developments Biochem. Sci. 37, 499–506 (2012).
Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal sign transduction. Annu. Rev. Biochem. 72, 609–642 (2003).
Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).
Waters, A. M. & Der, C. J. KRAS: the vital driver and therapeutic goal for pancreatic most cancers. Chilly Spring Harb. Perspect. Med. 8, a031435 (2018).
Hobbs, G. A., Der, C. J. & Rossman, Okay. L. RAS isoforms and mutations in most cancers at a look. J. Cell Sci. 129, 1287–1292 (2016).
Simanshu, D. Okay., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human illness. Cell 170, 17–33 (2017).
Wang, J. Y. & Doudna, J. A. CRISPR expertise: a decade of genome enhancing is barely the start. Science 379, eadd8643 (2023).
Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human mobile group. Science 375, eabi6983 (2022).
Smith, A. A. A. et al. Lipid nanodiscs by way of ordered copolymers. Chem 6, 2782–2795 (2020).
Esmaili, M. & Overduin, M. Membrane biology visualized in nanometer-sized discs shaped by styrene maleic acid polymers. Biochim. Biophys. Acta Biomembr. 1860, 257–263 (2018).
Knowles, T. J. et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485 (2009).
Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of dwell cells. Science 296, 913–916 (2002).
Swiecicki, J.-M., Santana, J. T. & Imperiali, B. A strategic method for fluorescence imaging of membrane proteins in a native-like setting. Cell Chem. Biol. 27, 245–251.e3 (2020).
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural research. Nat. Protoc. 9, 2574–2585 (2014).
Sniegowski, J. A., Phail, M. E. & Wachter, R. M. Maturation effectivity, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of inexperienced fluorescent protein. Biochem. Biophys. Res. Commun. 332, 657–663 (2005).
Xu, Y. et al. Constructions of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515, 448–452 (2014).
Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: construction of AmtB at 1.35 A. Science 305, 1587–1594 (2004).
Kim, D. M. & Nimigean, C. M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Chilly Spring Harb. Perspect. Biol. 8, a029231 (2016).
Gupta, Okay. et al. The function of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).
Nemoto, Y. & De Camilli, P. Recruitment of an alternatively spliced type of synaptojanin 2 to mitochondria by the interplay with the PDZ area of a mitochondrial outer membrane protein. EMBO J. 18, 2991–3006 (1999).
Chen, W. W., Freinkman, E., Wang, T., Birsoy, Okay. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).
Yamashita, A., Singh, S. Okay., Kawate, T., Jin, Y. & Gouaux, E. Crystal construction of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).
Zhang, F. et al. Quantification of epidermal development issue receptor expression degree and binding kinetics on cell surfaces by floor plasmon resonance imaging. Anal. Chem. 87, 9960–9965 (2015).
Hood, F. E., Sahraoui, Y. M., Jenkins, R. E. & Prior, I. A. Ras protein abundance correlates with Ras isoform mutation patterns in most cancers. Oncogene 42, 1224–1232 (2023).
Byrne, P. O., Hristova, Okay. & Leahy, D. J. EGFR types ligand-independent oligomers which can be distinct from the lively state. J. Biol. Chem. 295, 13353–13362 (2020).
Shen, J. & Maruyama, I. N. Nerve development issue receptor TrkA exists as a preformed, but inactive, dimer in dwelling cells. FEBS Lett. 585, 295–299 (2011).
Ahmed, F. & Hristova, Okay. Dimerization of the Trk receptors within the plasma membrane: results of their cognate ligands. Biochem. J. 475, 3669–3685 (2018).
Franco, M. L. et al. Interplay between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 297, 100926 (2021).
Van, Q. N. et al. RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention. Biomolecules 11, 377 (2021).
Abankwa, D., Gorfe, A. A. & Hancock, J. F. Ras nanoclusters: molecular construction and meeting. Semin. Cell Dev. Biol. 18, 599–607 (2007).
Nan, X. et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc. Natl Acad. Sci. USA 112, 7996–8001 (2015).
Ambrogio, C. et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic exercise of mutant KRAS. Cell 172, 857–868.e15 (2018).
Kessler, D. et al. Drugging an undruggable pocket on KRAS. Proc. Natl Acad. Sci. USA 116, 15823–15829 (2019).
Tran, T. H. et al. The small molecule BI-2852 induces a nonfunctional dimer of KRAS. Proc. Natl Acad. Sci. USA 117, 3363–3364 (2020).
Sarkar-Banerjee, S. et al. Spatiotemporal evaluation of Okay-Ras plasma membrane Interactions reveals a number of excessive order homo-oligomeric complexes. J. Am. Chem. Soc. 139, 13466–13475 (2017).
Buscail, L., Bournet, B. & Cordelier, P. Function of oncogenic KRAS within the prognosis, prognosis and therapy of pancreatic most cancers. Nat. Rev. Gastroenterol. Hepatol. 17, 153–168 (2020).
Muzumdar, M. D. et al. Survival of pancreatic most cancers cells missing KRAS operate. Nat. Commun. 8, 1090 (2017).
Sligar, S. G. & Denisov, I. G. Nanodiscs: a toolkit for membrane protein science. Protein Sci. 30, 297–315 (2021).
Boldog, T., Grimme, S., Li, M., Sligar, S. G. & Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl Acad. Sci. USA 103, 11509–11514 (2006).
Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in most cancers. Mol. Most cancers 17, 58 (2018).
Lindhoud, S., Carvalho, V., Pronk, J. W. & Aubin-Tam, M.-E. SMA-SH: modified styrene-maleic acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules 17, 1516–1522 (2016).
Wooden, E. R. et al. Discovery and in vitro analysis of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg. Med. Chem. Lett. 14, 953–957 (2004).
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).
Jaqaman, Okay. et al. Sturdy single-particle monitoring in live-cell time-lapse sequences. Nat. Strategies 5, 695–702 (2008).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Karandur, D. et al. Breakage of the oligomeric CaMKII hub by the regulatory phase of the kinase. eLife 9, e57784 (2020).
Mi, L.-Z. et al. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal development issue receptor. Nat. Struct. Mol. Biol. 18, 984–989 (2011).
Bhattacharyya, M. et al. MATLAB Codes for Native-nanoBleach (1.0.1) (Zenodo, 2023); https://doi.org/10.5281/zenodo.8429321