von Andrian UH, Mempel TR. Homing and mobile site visitors in lymph nodes. Nat Rev Immunol. 2003;3:867–78.
Sainte-Marie G. The lymph node revisited: growth, morphology, functioning, and function in triggering major immune responses. Anat Rec. 2010;293:320–37.
Zhang F, Zhu L, Huang X, Niu G, Chen X. Differentiation of reactive and tumor metastatic lymph nodes with diffusion-weighted and SPIO-enhanced MRI. Mol Imag Biol. 2013;15:40–7.
Louveau A, Smirnov I, Keyes TJ, et al. Structural and useful options of central nervous system lymphatic vessels. Nature. 2015;523:337–41.
Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains mind interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Administration of glioblastoma: state-of-the-art and future instructions. CA Most cancers J Clin. 2020;70:299–312.
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF circulation via the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci Transl Med. 2012;4: 147ra111.
Iliff JJ, Lee H, Yu M, et al. Mind-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Investig. 2013;123:1299–309.
Liau LM, Ashkan Ok, Brem S, et al. Affiliation of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival amongst sufferers with newly recognized and recurrent glioblastoma: a part 3 potential externally managed cohort trial. JAMA Oncol. 2023;9:112–21.
Zhao P, Le Z, Liu L, Chen Y. Therapeutic supply to the mind by way of the lymphatic vasculature. Nano Lett. 2020;20:5415–20.
Medawar PB. Immunity to homologous grafted pores and skin; the destiny of pores and skin homografts transplanted to the mind, to subcutaneous tissue, and to the anterior chamber of the attention. Br J Exp Pathol. 1948;29:58–69.
Bradbury MW, Westrop RJ. Elements influencing exit of drugs from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol. 1983;339:519–34.
Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells site visitors from mind to cervical lymph nodes by way of the cribroid plate and the nasal mucosa. J Leukoc Biol. 2006;80:797–801.
Widner H, Jönsson BA, Hallstadius L, Wingårdh Ok, Strand SE, Johansson BB. Scintigraphic technique to quantify the passage from mind parenchyma to the deep cervical lymph nodes in rats. Eur J Nucl Med. 1987;13:456–61.
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380–91.
Abbott NJ. Proof for bulk circulation of mind interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52.
Ray L, Iliff JJ, Heys JJ. Evaluation of convective and diffusive transport within the mind interstitium. Fluids Boundaries CNS. 2019;16:6.
Hannocks MJ, Pizzo ME, Huppert J, et al. Molecular characterization of perivascular drainage pathways within the murine mind. J Cereb Blood Circulation Metab. 2018;38:669–86.
Pizzo ME, Wolak DJ, Kumar NN, et al. Intrathecal antibody distribution within the rat mind: floor diffusion, perivascular transport and osmotic enhancement of supply. J Physiol. 2018;596:445–75.
Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the mind and the pathophysiology of neurological illness. Acta Neuropathol. 2009;117:1–14.
Földi M, Gellért A, Kozma M, Poberai M, Zoltán OT, Csanda E. New contributions to the anatomical connections of the mind and the lymphatic system. Acta Anat. 1966;64:498–505.
Da Mesquita S, Louveau A, Vaccari A, et al. Practical facets of meningeal lymphatics in ageing and Alzheimer’s illness. Nature. 2018;560:185–91.
Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels on the cranium base drain cerebrospinal fluid. Nature. 2019;572:62–6.
Li X, Qi L, Yang D, et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci. 2022;25:577–87.
Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a brand new participant in neurophysiology. Neuron. 2018;100:375–88.
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly via lymphatic vessels and is decreased in aged mice. Nat Commun. 2017;8:1434.
Hu X, Deng Q, Ma L, et al. Meningeal lymphatic vessels regulate mind tumor drainage and immunity. Cell Res. 2020;30:229–43.
Kuo PH, Stuehm C, Squire S, Johnson Ok. Meningeal lymphatic vessel circulation runs countercurrent to venous circulation within the superior sagittal sinus of the human mind. Tomography (Ann Arbor, Mich). 2018;4:99–104.
Mo F, Pellerino A, Soffietti R, Rudà R. Blood-brain barrier in mind tumors: biology and medical relevance. Int J Mol Sci. 2021;22:12654.
Daneman R, Prat A. The blood-brain barrier. Chilly Spring Harb Perspect Biol. 2015;7: a020412.
Tietz S, Engelhardt B. Mind obstacles: crosstalk between complicated tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506.
Owens T, Bechmann I, Engelhardt B. Perivascular areas and the 2 steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67:1113–21.
Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349–53.
Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun. 2014;5:4196.
Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalised therapy. J Clin Investig. 2023. https://doi.org/10.1172/JCI163447.
Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: classes from glioblastoma. Nat Immunol. 2019;20:1100–9.
Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25–39.
Antila S, Karaman S, Nurmi H, et al. Growth and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645–67.
Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH. Vascular endothelial development factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Coronary heart Circ Physiol. 2007;293:H709-718.
Music E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage permits immunosurveillance of mind tumours. Nature. 2020;577:689–94.
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological concerns for COVID-19 vaccine methods. Nat Rev Immunol. 2020;20:615–32.
Liau LM, Ashkan Ok, Tran DD, et al. First outcomes on survival from a big Part 3 medical trial of an autologous dendritic cell vaccine in newly recognized glioblastoma. J Transl Med. 2018;16:142.
Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell remedy for glioblastoma: latest medical advances and future challenges. Neuro Oncol. 2018;20:1429–38.
Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for glioblastoma: adoptive T-cell methods. Clin Most cancers Res. 2019;25:2042–8.
Lin YJ, Mashouf LA, Lim M. CAR T cell remedy in major mind tumors: present investigations and the long run. Entrance Immunol. 2022;13: 817296.
Quail DF, Joyce JA. The microenvironmental panorama of mind tumors. Most cancers Cell. 2017;31:326–41.
Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS websites. Entrance Oncol. 2015;5:153.
Sampson JH, Gunn MD, Fecci PE, Ashley DM. Mind immunology and immunotherapy in mind tumours. Nat Rev Most cancers. 2020;20:12–25.
Wang X, Wilhelm J, Li W, et al. Polycarbonate-based ultra-pH delicate nanoparticles enhance therapeutic window. Nat Commun. 2020;11:5828.
Chen H, Fan Y, Yu X, Semetey V, Trépout S, Li MH. Mild-gated nano-porous capsules from stereoisomer-directed self-assemblies. ACS Nano. 2021;15:884–93.
Chen Q, Chen J, Yang Z, et al. Nanoparticle-enhanced radiotherapy to set off strong most cancers immunotherapy. Adv Mater (Deerfield Seashore, Fla). 2019;31: e1802228.
Li Z, Zhu L, Solar H, et al. Fluorine meeting nanocluster breaks the shackles of immunosuppression to show the chilly tumor sizzling. Proc Natl Acad Sci USA. 2020;117:32962–9.
Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Solar M. Concentrating on pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to boost anti-PD-L1 immunotherapy. Sci Adv. 2020;6: eaaz9240.
Wang W-D, Solar Z-J. Evoking pyroptosis with nanomaterials for most cancers immunotherapy: present growth and novel outlook. Nano TransMed. 2022;1: e9130001.
Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher DW. The present versatility of polyurethane three-dimensional printing for biomedical functions. Tissue Eng Half B Rev. 2020;26:272–83.
Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–28.
Lee J, Kang S, Park H, Solar JG, Kim EC, Shim G. Nanoparticles for lymph node-directed supply. Pharmaceutics. 2023;15:565.
Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo focusing on of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Management Launch. 2006;112:26–34.
Wang Y, Wang J, Zhu D, et al. Impact of physicochemical properties on in vivo destiny of nanoparticle-based most cancers immunotherapies. Acta Pharm Sin B. 2021;11:886–902.
Cardones AR, Leitner WW, Fang L, et al. Genetic immunization with LYVE-1 cDNA yields function-blocking antibodies in opposition to native protein. Microvasc Res. 2006;71:32–9.
Brown P. Lymphatic system: unlocking the drains. Nature. 2005;436:456–8.
Irjala H, Johansson EL, Grenman R, Alanen Ok, Salmi M, Jalkanen S. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med. 2001;194:1033–42.
Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for most cancers immunotherapy. Nat Nanotechnol. 2017;12:648–54.
Schudel A, Chapman AP, Yau MK, et al. Programmable multistage drug supply to lymph nodes. Nat Nanotechnol. 2020;15:491–9.
Karabin NB, Allen S, Kwon HK, et al. Sustained micellar supply by way of inducible transitions in nanostructure morphology. Nat Commun. 2018;9:624.
Allen TM, Cullis PR. Liposomal drug supply techniques: from idea to medical functions. Adv Drug Deliv Rev. 2013;65:36–48.
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine supply techniques towards lymph nodes. Adv Drug Deliv Rev. 2021;179: 113914.
Li M, Du C, Guo N, et al. Composition design and medical software of liposomes. Eur J Med Chem. 2019;164:640–53.
Nakamura T, Harashima H. Daybreak of lipid nanoparticles in lymph node focusing on: potential in most cancers immunotherapy. Adv Drug Deliv Rev. 2020;167:78–88.
Kanasty R, Dorkin JR, Vegas A, Anderson D. Supply supplies for siRNA therapeutics. Nat Mater. 2013;12:967–77.
Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA supply. Nat Biotechnol. 2010;28:172–6.
Gilleron J, Querbes W, Zeigerer A, et al. Picture-based evaluation of lipid nanoparticle-mediated siRNA supply, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.
Yonezawa S, Koide H, Asai T. Current advances in siRNA supply mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154–155:64–78.
Corrias F, Lai F. New strategies for lipid nanoparticles preparation. Current Pat Drug Deliv Formul. 2011;5:201–13.
Kim S, Shi Y, Kim JY, Park Ok, Cheng JX. Overcoming the obstacles in micellar drug supply: loading effectivity, in vivo stability, and micelle-cell interplay. Knowledgeable Opin Drug Deliv. 2010;7:49–62.
Okamoto A, Asai T, Hirai Y, et al. Systemic administration of siRNA with anti-HB-EGF antibody-modified lipid nanoparticles for the therapy of triple-negative breast most cancers. Mol Pharm. 2018;15:1495–504.
Aldén M, Olofsson Falla F, Yang D, et al. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Points Mol Biol. 2022;44:1115–26.
Boettler T, Csernalabics B, Salié H, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77:653–9.
Loughrey D, Dahlman JE. Non-liver mRNA supply. Acc Chem Res. 2022;55:13–23.
Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node-targeting supply of mRNA most cancers vaccine elicits strong CD8(+) T cell response. Proc Natl Acad Sci USA. 2022;119: e2207841119.
Yu X, Dai Y, Zhao Y, et al. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.
Perez CR, De Palma M. Engineering dendritic cell vaccines to enhance most cancers immunotherapy. Nat Commun. 2019;10:5408.
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting strategy. Nat Rev Drug Discov. 2020;19:635–52.
Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of sufferers with B-cell lymphoma utilizing autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–8.
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Scientific use of dendritic cells for most cancers remedy. Lancet Oncol. 2014;15:e257-267.
Anguille S, Smits EL, Bryant C, et al. Dendritic cells as pharmacological instruments for most cancers immunotherapy. Pharmacol Rev. 2015;67:731–53.
Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo supply of CRISPR-Cas gene editors. J Management Launch. 2020;327:788–800.
Zhu FC, Guan XH, Li YH, et al. Immunogenicity and security of a recombinant adenovirus type-5-vectored COVID-19 vaccine in wholesome adults aged 18 years or older: a randomised, double-blind, placebo-controlled, part 2 trial. Lancet (London, England). 2020;396:479–88.
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral vector-based vaccine platforms for growing the following era of influenza vaccines. Vaccines. 2020;8:574.
Flemming A. mRNA vaccine exhibits promise in autoimmunity. Nat Rev Immunol. 2021;21:72.
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and challenges within the supply of mRNA-based vaccines. Pharmaceutics. 2020;12:102.