Saturday, January 6, 2024
HomeNanotechnologyNew insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial exercise,...

New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial exercise, immunomodulation and periodontium regeneration | Journal of Nanobiotechnology


  • Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, et al. Oral ailments: a world public well being problem. Lancet. 2019;394:249–60.

    Article 
    PubMed 

    Google Scholar
     

  • Jiao J, Jing W, Si Y, Feng X, Tai B, Hu D, Lin H, Wang B, Wang C, Zheng S, et al. The prevalence and severity of periodontal illness in Mainland China: knowledge from the Fourth Nationwide Oral Well being Survey (2015–2016). J Clin Periodontol. 2021;48:168–79.

    Article 
    PubMed 

    Google Scholar
     

  • Eke PI, Wei L, Borgnakke WS, Thornton-Evans G, Zhang XY, Lu H, Mcguire LC, Genco RJ. Periodontitis prevalence in adults ≥ 65 years of age, within the USA. Periodontol. 2000;2016(72):76–95.


    Google Scholar
     

  • Luo LS, Luan HH, Wu L, Shi YJ, Wang YB, Huang Q, Xie WZ, Zeng XT. Secular tendencies in extreme periodontitis incidence, prevalence and disability-adjusted life years in 5 Asian international locations: a comparative research from 1990 to 2017. J Clin Periodontol. 2021;48:627–37.

    Article 
    PubMed 

    Google Scholar
     

  • Hajishengallis G. Periodontitis: from microbial immune subversion to systemic irritation. Nat Rev Immunol. 2015;15:30–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zieba M, Chaber P, Duale Ok, Martinka Maksymiak M, Basczok M, Kowalczuk M, Adamus G. Polymeric carriers for supply techniques within the therapy of persistent periodontal illness. Polymers (Basel). 2020;12:1574.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajishengallis G. Interconnection of periodontal illness and comorbidities: Proof, mechanisms, and implications. Periodontol 2000. 2022;89:9–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim WJ, Soh Y, Heo SM. Latest advances of therapeutic targets for the therapy of periodontal illness. Biomol Ther (Seoul). 2021;29:263–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sgolastra F, Petrucci A, Ciarrocchi I, Masci C, Spadaro A. Adjunctive systemic antimicrobials within the therapy of persistent periodontitis: a scientific evaluate and community meta-analysis. J Periodontal Res. 2020;56:236–48.

    Article 
    PubMed 

    Google Scholar
     

  • Kherul Anuwar AH, Saub R, Safii SH, Ab-Murat N, Mohd Taib MS, Mamikutty R, Ng CW. Systemic antibiotics as an adjunct to subgingival debridement: a community meta-analysis. Antibiotics (Basel). 2022;11:1716.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal ailments. Nat Rev Dis Primers. 2017;3:17038.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Li Y, Ren M, Wang X, Li L, Liu F, Lan Y, Yang S, Track J. pH and lipase-responsive nanocarrier-mediated twin drug supply system to deal with periodontitis in diabetic rats. Bioact Mater. 2022;18:254–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Y, Wang Y, Li J, Tang M, Chen H, Wang G, Guo J, Gui S. Microemulsion-thermosensitive gel composites as in situ-forming drug reservoir for periodontitis tissue restore by alveolar bone and collagen regeneration technique. Pharm Dev Technol. 2023;28:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Li C, Wan Y, Qi M, Chen Q, Solar Y, Solar X, Fang J, Fu L, Xu L, et al. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation through macrophage polarization in opposition to periodontal irritation. Small. 2021;17:e2101505.

    Article 
    PubMed 

    Google Scholar
     

  • Tian Y, Li Y, Liu J, Lin Y, Jiao J, Chen B, Wang W, Wu S, Li C. Photothermal remedy with regulated Nrf2/NF-kappaB signaling pathway for treating bacteria-induced periodontitis. Bioact Mater. 2022;9:428–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Hajishengallis G, Chavakis T, Lambris JD. Present understanding of periodontal illness pathogenesis and targets for host-modulation remedy. Periodontol 2000. 2020;84:14–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Present ideas within the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol. 2023;15:2197779.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pai SI, Matheus HR, Guastaldi FPS. Results of periodontitis on most cancers outcomes within the period of immunotherapy. Lancet Wholesome Longev. 2023;4:e166–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benoit DSW, Sims KR Jr, Fraser D. Nanoparticles for oral biofilm remedies. ACS Nano. 2019;13:4869–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su X, Zhang J, Qin X. CD40 up-regulation on dendritic cells correlates with Th17/Treg imbalance in persistent periodontitis in younger inhabitants. Innate Immun. 2020;26:482–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Y, Deng Y, Ma S, Ran M, Jia Y, Meng J, Han F, Gou J, Yin T, He H, et al. Native drug supply techniques as therapeutic methods in opposition to periodontitis: a scientific evaluate. J Management Launch. 2021;333:269–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uriarte SM, Edmisson JS, Jimenez-Flores E. Human neutrophils and oral microbiota: a relentless tug-of-war between a harmonious and a discordant coexistence. Immunol Rev. 2016;273:282–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Winer D, Goh C, Shrestha A. Injectable thermosensitive hydrogel to modulate tolerogenic dendritic cells underneath hyperglycemic situation. Biomater Sci. 2023;11:2091–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilensky A, Segev H, Mizraji G, Shaul Y, Capucha T, Shacham M, Hovav AH. Dendritic cells and their position in periodontal illness. Oral Dis. 2014;20:119–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou J, Zeng Z, Xie W, Zeng Z. Immunotherapy with regulatory T and B cells in periodontitis. Int Immunopharmacol. 2022;109:108797.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arun KV, Talwar A, Kumar TS. T-helper cells within the etiopathogenesis of periodontal illness: a mini evaluate. J Indian Soc Periodontol. 2011;15:4–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR signaling within the regulation of CD4+ T cell subsets in periodontal ailments. Entrance Immunol. 2022;13: 827461.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kidd P. Th1/Th2 steadiness: the speculation, its limitations, and implications for well being and illness. Altern Med Rev. 2003;8:223–46.

    PubMed 

    Google Scholar
     

  • El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a essential hyperlink to alveolar bone loss and systemic illness danger in periodontitis: immunotherapeutic implications. Periodontol 2000. 2022;89:41–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meghil MM, Ghaly M, Cutler CW. A story of two fimbriae: how invasion of dendritic cells by Porphyromonas gingivalis disrupts DC maturation and depolarizes the T-cell-mediated immune response. Pathogens. 2022;11:328.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The position of Th17 cells/IL-17A in AD, PD, ALS and the strategic remedy concentrating on on IL-17A. J Neuroinflammation. 2022;19:98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells within the periodontitis area of interest: inseparable interactions and mechanisms. J Leukoc Biol. 2021;110:565–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cafferata EA, Terraza-Aguirre C, Barrera R, Faundez N, Gonzalez N, Rojas C, Melgar-Rodriguez S, Hernandez M, Carvajal P, Cortez C, et al. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance throughout periodontitis. J Clin Periodontol. 2020;47:676–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1beta is a possible therapeutic goal for periodontitis: a story evaluate. Int J Oral Sci. 2020;12:2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan W, Wang Q, Chen Q. The cytokine community concerned within the host immune response to periodontitis. Int J Oral Sci. 2019;11:30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue engineered constructs for periodontal regeneration: present standing and future views. Adv Healthc Mater. 2018;7:e1800457.

    Article 
    PubMed 

    Google Scholar
     

  • Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi G, Shi D, Wang M, Webster TJ. Lowering bacterial infections and biofilm formation utilizing nanoparticles and nanostructured antibacterial surfaces. Adv Healthc Mater. 2018;7:e1800103.

    Article 
    PubMed 

    Google Scholar
     

  • Mehta D, Saini V, Aggarwal B, Khan A, Bajaj A. Unlocking the bacterial membrane as a therapeutic goal for next-generation antimicrobial amphiphiles. Mol Facets Med. 2021;81:100999.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guentsch A, Jentsch H, Pfister W, Hoffmann T, Eick S. Moxifloxacin as an adjunctive antibiotic within the therapy of extreme persistent periodontitis. J Periodontol. 2008;79:1894–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mudgil M, Pawar PK. Preparation and in vitro/ex vivo analysis of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic software. Sci Pharm. 2013;81:591–606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinon-Segundo E, Ganem-Quintanar A, Alonso-Perez V, Quintanar-Guerrero D. Preparation and characterization of triclosan nanoparticles for periodontal therapy. Int J Pharm. 2005;294:217–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao W, Xu P, Pang Z, Zhao J, Chai Z, Li X, Li H, Jiang M, Cheng H, Zhang B, Cheng N. Native supply of minocycline-loaded PEG-PLA nanoparticles for the improved therapy of periodontitis in canines. Int J Nanomed. 2014;9:3963–70.


    Google Scholar
     

  • Beg S, Dhiman S, Sharma T, Jain A, Sharma RK, Jain A, Singh B. Stimuli responsive in situ gelling techniques loaded with PLGA nanoparticles of moxifloxacin hydrochloride for efficient therapy of periodontitis. AAPS PharmSciTech. 2020;21:76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi Y, Wang Y, Gao J, Xiao Y, Du J. Twin corona vesicles with intrinsic antibacterial and enhanced antibiotic supply capabilities for efficient therapy of biofilm-induced periodontitis. ACS Nano. 2019;13:13645–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gold Ok, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial exercise of metallic and metal-oxide primarily based nanoparticles. Adv Therap. 2018;1:1700033.

    Article 

    Google Scholar
     

  • Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters instead of dangerous antibiotics in opposition to Gram-negative micro organism. J Hazard Mater. 2021;416:126236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen R, Wang Y, Wang P, Pu J, Xu X, Chen F, Jiang L, Jiang Q, Yan F. Antibiofilm exercise of ultra-small gold nanoclusters in opposition to Fusobacterium nucleatum in dental plaque biofilms. J Nanobiotechnol. 2022;20:470.

    Article 
    CAS 

    Google Scholar
     

  • Amna T, Hassan MS, Sheikh FA, Lee HK, Search engine optimization KS, Yoon D, Hwang IH. Zinc oxide-doped poly(urethane) spider internet nanofibrous scaffold through one-step electrospinning: a novel matrix for tissue engineering. Appl Microbiol Biotechnol. 2013;97:1725–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anitha S, Brabu B, John Thiruvadigal D, Gopalakrishnan C, Natarajan TS. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym. 2013;97:856–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014;39:109–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krol A, Pomastowski P, Rafinska Ok, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: synthesis, antiseptic exercise and toxicity mechanism. Adv Colloid Interface Sci. 2017;249:37–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial actions of zinc oxide nanoparticles in opposition to Escherichia coli O157:H7. J Appl Microbiol. 2009;107:1193–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Overview on zinc oxide nanoparticles: antibacterial exercise and toxicity mechanism. Nanomicro Lett. 2015;7:219–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Adams LK, Lyon DY, Alvarez PJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40:3527–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger M-A. The contribution of zinc ions to the antimicrobial exercise of zinc oxide. Colloids Surf A Physicochem Eng Asp. 2014;457:263–74.

    Article 
    CAS 

    Google Scholar
     

  • Sanchez-Lopez E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, et al. Metallic-based nanoparticles as antimicrobial brokers: an outline. Nanomaterials (Basel). 2020;10:292.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakshmi Prasanna V, Vijayaraghavan R. Perception into the mechanism of antibacterial exercise of ZnO: floor defects mediated reactive oxygen species even at the hours of darkness. Langmuir. 2015;31:9155–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhumitha G, Elango G, Roopan SM. Biotechnological facets of ZnO nanoparticles: overview on synthesis and its functions. Appl Microbiol Biotechnol. 2016;100:571–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munchow EA, Albuquerque MT, Zero B, Kamocki Ok, Piva E, Gregory RL, Bottino MC. Growth and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater. 2015;31:1038–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes included with ZnO nanoparticles as pores and skin substitutes with enhanced fibroblast proliferation and wound therapeutic. RSC Adv. 2014;4:24777–85.

    Article 
    CAS 

    Google Scholar
     

  • Dias AM, da Silva FG, Monteiro APF, Pinzon-Garcia AD, Sinisterra RD, Cortes ME. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for therapy of periodontal illness. Mater Sci Eng C Mater Biol Appl. 2019;103:109798.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mou J, Liu Z, Liu J, Lu J, Zhu W, Pei D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis software: preparation, characterization and analysis. Drug Deliv. 2019;26:179–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal remedy and its potentials in antibacterial therapy. J Management Launch. 2020;328:251–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metallic nanoclusters. J Nanobiotechnol. 2022;20:328.

    Article 

    Google Scholar
     

  • Lin J, He Z, Liu F, Feng J, Huang C, Solar X, Deng H. Hybrid hydrogels for synergistic periodontal antibacterial therapy with sustained drug launch and NIR-responsive photothermal impact. Int J Nanomed. 2020;15:5377–87.

    Article 
    CAS 

    Google Scholar
     

  • Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-activable metal-bearing nanomaterials and exact on-demand antibacterial methods. ACS Nano. 2022;16:19840–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia Q, Track Q, Li P, Huang W. Rejuvenated photodynamic remedy for bacterial infections. Adv Healthc Mater. 2019;8:e1900608.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao J, Zhang Y, Zhang J, Wu H, Li J, Zhao Y, Zhang L, Zou D, Li Z, Wang S. Artificial and biodegradable molybdenum(IV) diselenide triggers the cascade photo- and immunotherapy of tumor. Adv Healthc Mater. 2022;11:2200524.

    Article 
    CAS 

    Google Scholar
     

  • Fu X, Yang Z, Deng T, Chen J, Wen Y, Fu X, Zhou L, Zhu Z, Yu C. A pure polysaccharide mediated MOF-based Ce6 supply system with improved organic properties for photodynamic remedy. J Mater Chem B. 2020;8:1481–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Wang L, Lynch CD, Solar X, Li X, Qi M, Ma C, Li C, Dong B, Zhou Y, Xu HHK. Nanoparticles having amphiphilic silane containing Chlorin e6 with sturdy anti-biofilm exercise in opposition to periodontitis-related pathogens. J Dent. 2019;81:70–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Ying D, Qi M, Li X, Fu L, Solar X, Wang L, Zhou Y. Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 in opposition to periodontal pathogens. Molecules. 2019;24:2692.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen B, Dong B, Wang J, Zhang S, Xu L, Yu W, Track H. Amphiphilic silane modified NaYF4:Yb, Er loaded with Eu(TTA)3(TPPO)2 nanoparticles and their multi-functions: twin mode temperature sensing and cell imaging. Nanoscale. 2013;5:8541–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Pan W, Shi E, Bai L, Liu H, Li C, Wang Y, Deng J, Wang Y. A multifunctional nanosystem primarily based on bacterial cell-penetrating photosensitizer for combating periodontitis through combining photodynamic and antibiotic therapies. ACS Biomater Sci Eng. 2021;7:772–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Zhang X, Zhu X, Chen J, Chen Q, Zhang H, Hou L, Zhang Z. NIR light-induced tumor phototherapy utilizing photo-stable ICG supply system primarily based on inorganic hybrid. Nanomedicine. 2018;14:73–84.

    Article 
    PubMed 

    Google Scholar
     

  • Nagahara A, Mitani A, Fukuda M, Yamamoto H, Tahara Ok, Morita I, Ting CC, Watanabe T, Fujimura T, Osawa Ok, et al. Antimicrobial photodynamic remedy utilizing a diode laser with a possible new photosensitizer, indocyanine green-loaded nanospheres, could also be efficient for the clearance of Porphyromonas gingivalis. J Periodontal Res. 2013;48:591–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi E, Bai L, Mao L, Wang H, Yang X, Wang Y, Zhang M, Li C, Wang Y. Self-assembled nanoparticles containing photosensitizer and polycationic brush for synergistic photothermal and photodynamic remedy in opposition to periodontitis. J Nanobiotechnol. 2021;19:413.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation within the therapy of periodontitis: progress and views. Entrance Immunol. 2021;12:781378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balta MG, Papathanasiou E, Blix IJ, Van Dyke TE. Host modulation and therapy of periodontal illness. J Dent Res. 2021;100:798–809.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu XW, Liu X, Shi C, Solar HC. Roles of immune cells and mechanisms of immune responses in periodontitis. Chin J Dent Res. 2021;24:219–30.

    PubMed 

    Google Scholar
     

  • Solar X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized macrophages in periodontitis: traits, perform, and molecular signaling. Entrance Immunol. 2021;12:763334.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154:186–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutilier AJ, Elsawa SF. Macrophage polarization states within the tumor microenvironment. Int J Mol Sci. 2021;22:6995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chanmee T, Ontong P, Konno Ok, Itano N. Tumor-associated macrophages as main gamers within the tumor microenvironment. Cancers (Basel). 2014;6:1670–90.

    Article 
    PubMed 

    Google Scholar
     

  • Huang X, Li Y, Fu M, Xin H-B. Polarizing macrophages in vitro. In: Rousselet G, editor. Macrophages. Strategies in molecular biology. New York: Springer; 2018. p. 119–26.


    Google Scholar
     

  • Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in ailments. J Leukoc Biol. 2019;106:345–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Zhang Y, Zhang X, Chen R, Wei J, Hou J, Wang B, Lai H, Huang Y. Transforming immune microenvironment in periodontitis utilizing resveratrol liposomes as an antibiotic-free therapeutic technique. J Nanobiotechnol. 2021;19:429.

    Article 
    CAS 

    Google Scholar
     

  • Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, Lin Z. Chitosan hydrogel included with dental pulp stem cell-derived exosomes alleviates periodontitis in mice through a macrophage-dependent mechanism. Bioact Mater. 2020;5:1113–26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figueiredo RDA, Ortega AC, Gonzalez Maldonado LA, Castro RD, Avila-Campos MJ, Rossa C, Aquino SG. Perillyl alcohol has antibacterial results and reduces ROS manufacturing in macrophages. J Appl Oral Sci. 2020;28:e20190519.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Kim HY, Track SY, Go SH, Sohn HS, Baik S, Soh M, Kim Ok, Kim D, Kim HC, et al. Synergistic oxygen era and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis therapy. ACS Nano. 2019;13:3206–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng J, Lu C, Zhao Q, Chen Ok, Ma S, Li Z. The Th17/Treg cell steadiness: crosstalk among the many immune system, bone and microbes in periodontitis. J Periodontal Res. 2022;57:246–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kini V, Mohanty I, Telang G, Vyas N. Immunopathogenesis and distinct position of Th17 in periodontitis: a evaluate. J Oral Biosci. 2022;64:193–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mousset CM, Hobo W, Woestenenk R, Preijers F, Dolstra H, van der Waart AB. Complete phenotyping of T cells utilizing move cytometry. Cytometry A. 2019;95:647–54.

    Article 
    PubMed 

    Google Scholar
     

  • Gaffen SL, Moutsopoulos NM. Regulation of host–microbe interactions at oral mucosal obstacles by sort 17 immunity. Sci Immunol. 2020;5:eaau4594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karthikeyan B. Talwar, Arun KV, Kalaivani S: Analysis of transcription issue that regulates T helper 17 and regulatory T cells perform in periodontal well being and illness. J Pharm Bioallied Sci. 2015;7:S672-676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen J, Fu H, Kuang S, He F, Zhang M, Shen Z, Qin W, Lin Z, Huang S. Exosomes derived from 3D-cultured MSCs enhance therapeutic results in periodontitis and experimental colitis and restore the Th17 cell/Treg steadiness in infected periodontium. Int J Oral Sci. 2021;13:43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, Liang Y, Bao L, Feng G, Ji J, et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg steadiness by concentrating on sirtuin-1 in persistent periodontitis. J Cell Physiol. 2019;234:20662–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prasad R, Suchetha A, Lakshmi P, Darshan MB, Apoorva SM, Ashit GB. Interleukin-11 – its position within the vicious cycle of irritation, periodontitis and diabetes: a clinicobiochemical cross-sectional research. J Indian Soc Periodontol. 2015;19:159–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toker H, Gorgun EP, Korkmaz EM, Yuce HB, Poyraz O. The consequences of IL-10 gene polymorphism on serum, and gingival crevicular fluid ranges of IL-6 and IL-10 in persistent periodontitis. J Appl Oral Sci. 2018;26:e20170232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Chen B, Yan F, Guo J, Zhu X, Ma S, Yang W. Interleukin-10 inhibits bone resorption: a possible therapeutic technique in periodontitis and different bone loss ailments. Biomed Res Int. 2014;2014:284836.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Luo W, Ng TW, Leung PC, Zhang C, Leung KC, Jin L. Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells. Nanoscale. 2017;9:12897–907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao X, Zhao J, Solar J, Hu M, Yang X. Polydopamine nanoparticles as environment friendly scavengers for reactive oxygen species in periodontal illness. ACS Nano. 2018;12:8882–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater. 2020;108:207–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Luan X, Liu X. Latest advances in periodontal regeneration: a biomaterial perspective. Bioact Mater. 2020;5:297–308.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Wang H, Zhang L, Li X, Ding X, Ding G, Wei F. Periodontal ligament stem cells promote polarization of M2 macrophages. J Leukoc Biol. 2022;111:1185–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JS, Lee JB, Cha JK, Choi EY, Park SY, Cho KS, Kim CS. Chemokine in infected periodontal tissues prompts wholesome periodontal-ligament stem cell migration. J Clin Periodontol. 2017;44:530–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou M, Liu N, Zhang Q, Tian T, Ma Q, Zhang T, Cai X. Impact of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 2019;52:e12566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Li Z, Zhang Y, Fathy AH, Zhou M. The position of the Wnt/beta-catenin signaling pathway within the proliferation of gold nanoparticle-treated human periodontal ligament stem cells. Stem Cell Res Ther. 2018;9:214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater. 2021;6:3288–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Dai Q, Weir MD, Schneider A, Zhang C, Hack GD, Oates TW, Zhang Ok, Li A, Xu HHK. Biocompatible nanocomposite enhanced osteogenic and cementogenic differentiation of periodontal ligament stem cells in vitro for periodontal regeneration. Supplies (Basel). 2020;13:4951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie L, Chen J, Ren X, Zhang M, Thuaksuban N, Nuntanaranont T, Guan Z. Alteration of circRNA and lncRNA expression profile in exosomes derived from periodontal ligament stem cells present process osteogenic differentiation. Arch Oral Biol. 2021;121:104984.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Shuai Y, Zhou F, Yin J, Hu J, Guo S, Wang Y, Liu W. PDLSCs regulate angiogenesis of periodontal ligaments through VEGF transferred by exosomes in periodontitis. Int J Med Sci. 2020;17:558–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei F, Li M, Lin T, Zhou H, Wang F, Su X. Therapy of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 2022;141:333–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Konermann A, Guo T, Jager A, Zhang L, Jin Y. Canonical Wnt signaling in a different way modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament underneath inflammatory situations. Biochim Biophys Acta. 2014;1840:1125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calabrese EJ. Hormesis and bone marrow stem cells: enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem Biol Work together. 2022;351:109730.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Li J, Zhou J, Qiu Y, Track J. Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies. Ultrasonics. 2022;121:106678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu L, Liu Y, Zhang X, Lin J. The therapeutic position of bone marrow stem cell native injection in rat experimental periodontitis. J Oral Rehabil. 2020;47(Suppl 1):73–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen R, Xu W, Xue Y, Chen L, Ye H, Zhong E, Ye Z, Gao J, Yan Y. The usage of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif Cells Nanomed Biotechnol. 2018;46:419–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye Z, Xu W, Shen R, Yan Y. Emulsion electrospun PLA/calcium alginate nanofibers for periodontal tissue engineering. J Biomater Appl. 2020;34:763–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • AlQranei MS, Chellaiah MA. Osteoclastogenesis in periodontal ailments: attainable mediators and mechanisms. J Oral Biosci. 2020;62:123–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, Nara Y, Pramusita A, Kinjo R, Mizoguchi I. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21:5169.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Wan Z, Yang L, Track S, Fu Z, Tang Ok, Chen L, Track Y. Exosomes derived from reparative M2-like macrophages forestall bone loss in murine periodontitis fashions through IL-10 mRNA. J Nanobiotechnol. 2022;20:110.

    Article 
    CAS 

    Google Scholar
     

  • Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Alanazi MM, Aldossari AA, Assiri MA, Mahmood HM, Al-Mazroua HA, Ahmad SF. CXC chemokine receptor 3 antagonist AMG487 exhibits potent anti-arthritic results on collagen-induced arthritis by modifying B cell inflammatory profile. Immunol Lett. 2020;225:74–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiyari S, Inexperienced E, Pan C, Lari S, Davar M, Davis R, Camargo PM, Tetradis S, Lusis AJ, Pirih FQ. Genomewide affiliation research identifies Cxcl relations as partial mediators of LPS-induced periodontitis. J Bone Miner Res. 2018;33:1450–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui ZK, Bastiat G, Jin C, Keyvanloo A, Lafleur M. Affect of the character of the sterol on the conduct of palmitic acid/sterol mixtures and their derived liposomes. Biochim Biophys Acta. 2010;1798:1144–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lari S, Hiyari S, de Araujo Silva DN, de Brito BB, Ishii M, Monajemzadeh S, Cui ZK, Tetradis S, Lee M, Pirih FQ. Native supply of a CXCR3 antagonist decreases the development of bone resorption induced by LPS injection in a murine mannequin. Clin Oral Investig. 2022;26:5163–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menicanin D, Hynes Ok, Han J, Gronthos S, Bartold PM. Cementum and periodontal ligament regeneration. Adv Exp Med Biol. 2015;881:207–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozbay E, Dominici F, Gokbuget AY, Cintan S, Guida L, Aydin MS, Mariotti A, Pilloni A. Preservation of root cementum: a comparative analysis of power-driven versus hand devices. Int J Dent Hyg. 2018;16:202–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wang X, Ma L, Huang X, Peng Y, Huang H, Gao X, Chen Y, Cao Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci. 2022;1516:300–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Li Y, Shao P, Wang L, Bao X, Hu M. IL1beta inhibits differentiation of cementoblasts through microRNA-325-3p. J Cell Biochem. 2020;121:2606–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park CH, Oh JH, Jung HM, Choi Y, Rahman SU, Kim S, Kim TI, Shin HI, Lee YS, Yu FH, et al. Results of the incorporation of epsilon-aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration. Acta Biomater. 2017;61:134–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen E, Wang T, Tu Y, Solar Z, Ding Y, Gu Z, Xiao S. ROS-scavenging biomaterials for periodontitis. J Mater Chem B. 2023;11:482–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wang D, Huangfu H, Lv H, Qin Q, Ren S, Zhang Y, Wang L, Zhou Y. Branched AuAg nanoparticles coated by metallic–phenolic networks for treating bacteria-induced periodontitis through photothermal antibacterial and immunotherapy. Mater Des. 2022;224:111401.

    Article 
    CAS 

    Google Scholar
     

  • Yan N, Xu J, Liu G, Ma C, Bao L, Cong Y, Wang Z, Zhao Y, Xu W, Chen C. Penetrating macrophage-based nanoformulation for periodontitis therapy. ACS Nano. 2022;16:18253–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q, Pei X, Wang J. Osteogenic exercise and antibacterial impact of porous titanium modified with metal-organic framework movies. J Biomed Mater Res A. 2017;105:834–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong L, Chen J, Ma Z, Feng H, Chen S, Cai H, Xue Y, Pei X, Wang J, Wan Q. 3D printing of metal-organic framework included porous scaffolds to advertise osteogenic differentiation and bone regeneration. Nanoscale. 2020;12:24437–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar M, Liu Y, Jiao Ok, Jia W, Jiang Ok, Cheng Z, Liu G, Luo Y. A periodontal tissue regeneration technique through biphasic launch of zeolitic imidazolate framework-8 and FK506 utilizing a uniaxial electrospun Janus nanofiber. J Mater Chem B. 2022;10:765–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhu Z, Pei X, Zhang X, Cheng X, Hu S, Gao X, Wang J, Chen J, Wan Q. ZIF-8-modified multifunctional bone-adhesive hydrogels selling angiogenesis and osteogenesis for bone regeneration. ACS Appl Mater Interfaces. 2020;12:36978–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Y, Zhu Z, Zhang X, Chen J, Yang X, Gao X, Zhang S, Luo F, Wang J, Zhao W, et al. Accelerated bone regeneration by MOF modified multifunctional membranes by enhancement of osteogenic and angiogenic efficiency. Adv Healthc Mater. 2021;10:e2001369.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Li T, Solar M, Cheng Z, Jia W, Jiao Ok, Wang S, Jiang Ok, Yang Y, Dai Z, et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the therapy of periodontitis. Acta Biomater. 2022;146:37–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Z, Lin Y, Xu S, Chang L, Zhao X, Mei X, Gao X. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting micro organism and inducing bone regeneration. Mater Des. 2023;225:111487.

    Article 
    CAS 

    Google Scholar
     

  • Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann H-G, Rychly J. A twin perform of copper in designing regenerative implants. Biomaterials. 2015;44:36–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Zhao S, Weng Z, Zhang W, Wan X, Cui T, Ye J, Liao L, Wang X. Jelly-inspired injectable guided tissue regeneration technique with form auto-matched and dual-light-defined antibacterial/osteogenic sample change properties. ACS Appl Mater Interfaces. 2020;12:54497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Ouyang Y, Zhang Z, Wen S, Pi Y, Chen D, Su Z, Liang Z, Guo L, Wang Y. The position of Th17 cells: rationalization of relationship between periodontitis and COPD? Inflamm Res. 2022;71:1011–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beklen A, Ainola M, Hukkanen M, Gurgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent Res. 2007;86:347–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cavalla F, Hernandez M. Polarization profiles of T lymphocytes and macrophages responses in periodontitis. Adv Exp Med Biol. 2022;1373:195–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papathanasiou E, Conti P, Carinci F, Lauritano D, Theoharides TC. IL-1 superfamily members and periodontal ailments. J Dent Res. 2020;99:1425–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plemmenos G, Evangeliou E, Polizogopoulos N, Chalazias A, Deligianni M, Piperi C. Central regulatory position of cytokines in periodontitis and concentrating on choices. Curr Med Chem. 2021;28:3032–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni C, Zhou J, Kong N, Bian T, Zhang Y, Huang X, Xiao Y, Yang W, Yan F. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis therapy. Biomaterials. 2019;206:115–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu X, Yu Y, Liu H, Li X, Solar W, Wu W, Liu C, Miao L. Transforming the periodontitis microenvironment for osteogenesis through the use of a reactive oxygen species-cleavable nanoplatform. Acta Biomater. 2021;135:593–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Wang L, Gu Y, Lin L, Zhang M, Jin M, Mao C, Zhou J, Zhang W, Huang X, et al. Biomimetic immunomodulation by crosstalk with nanoparticulate regulatory T cells. Matter. 2021;4:3621–45.

    Article 
    CAS 

    Google Scholar
     

  • Solar Y, Solar X, Li X, Li W, Li C, Zhou Y, Wang L, Dong B. A flexible nanocomposite primarily based on nanoceria for antibacterial enhancement and safety from aPDT-aggravated irritation through modulation of macrophage polarization. Biomaterials. 2021;268:120614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral well being. Biomed Pharmacother. 2018;99:883–93.

    Article 
    PubMed 

    Google Scholar
     

  • Fan R, Zhou Y, Chen X, Zhong X, He F, Peng W, Li L, Wang X, Xu Y. Porphyromonas gingivalis outer membrane vesicles promote apoptosis through msRNA-regulated DNA methylation in periodontitis. Microbiol Spectr. 2023;11:e0328822.

    Article 
    PubMed 

    Google Scholar
     

  • Bustamante M, Oomah BD, Mosi-Roa Y, Rubilar M, Burgos-Diaz C. Probiotics as an adjunct remedy for the therapy of halitosis, dental caries and periodontitis. Probiotics Antimicrob Proteins. 2020;12:325–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zidar A, Kristl J, Kocbek P, Zupancic S. Therapy challenges and supply techniques in immunomodulation and probiotic therapies for periodontitis. Knowledgeable Opin Drug Deliv. 2021;18:1229–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Liu Y, Wang W, Ma J, Zhang M, Lu X, Liu J, Kou Y. The rationale and potential for utilizing Lactobacillus within the administration of periodontitis. J Microbiol. 2022;60:355–63.

    Article 
    PubMed 

    Google Scholar
     

  • Jung JI, Kim YG, Kang CH, Imm JY. Results of Lactobacillus curvatus MG5246 on inflammatory markers in Porphyromonas gingivalis lipopolysaccharide-sensitized human gingival fibroblasts and periodontitis rat mannequin. Meals Sci Biotechnol. 2022;31:111–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteban-Fernández A, Ferrer MD, Zorraquín-Peña I, López-López A. Mira MVM-AA: in vitro useful results of Streptococcus dentisani as potencial oral probiotic for periodontal ailments. J Periodontol. 2019;90:1346–55.

    Article 
    PubMed 

    Google Scholar
     

  • Mittal M, Siddiqui MR, Tran Ok, Reddy SP, Malik AB. Reactive oxygen species in irritation and tissue damage. Antioxid Redox Sign. 2014;20:1126–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan DQ, Suda T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell destiny and performance. Antioxid Redox Sign. 2018;29:149–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Castillo LF, Schlegel Gomez R, Pelka M, Hornstein OP, Johannessen AC, von den Driesch P. Immunohistochemical localization of very late activation integrins in wholesome and diseased human gingiva. J Periodontal Res. 1996;31:36–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haapasalmi Ok, Mäkelä M, Oksala O, Heino J, Yamada KM, Uitto VJ, Larjava H. Expression of epithelial adhesion proteins and integrins in persistent irritation. Am J Pathol. 1995;147:193.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and past. Biomaterials. 2003;24:4385–415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruoslahti E. RGD and different recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao W, Xu P, Zhao J, Ling L, Li X, Zhang B, Cheng N, Pang Z. RGD functionalized polymeric nanoparticles concentrating on periodontitis epithelial cells for the improved therapy of periodontitis in canines. J Colloid Interface Sci. 2015;458:14–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He XT, Li X, Zhang M, Tian BM, Solar LJ, Bi CS, Deng DK, Zhou H, Qu HL, Wu C, Chen FM. Function of molybdenum in materials immunomodulation and periodontal wound therapeutic: concentrating on immunometabolism and mitochondrial perform for macrophage modulation. Biomaterials. 2022;283:121439.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang G, Peng C, Tang M, Wang Y, Li J, Chen H, Chang X, Shu Z, He N, Guo J, Gui S. Concurrently boosting irritation decision and osteogenic differentiation in periodontitis utilizing folic acid-modified liposome-thermosensitive hydrogel composites. Mater Des. 2023;234:112314.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, Wang X, Chang X, Guo J, Gui S. Sensible stimuli-responsive hydrogels for drug supply in periodontitis therapy. Biomed Pharmacother. 2023;162:114688.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li N, Xie L, Wu Y, Wu Y, Liu Y, Gao Y, Yang J, Zhang X, Jiang L. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti inflammatory results for periodontitis therapy. Mater At present Bio. 2022;16:100360.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Yi W, Yan J, Chen Z, Fan H, Zaldivar-Silva D, Agüero L, Wang S. Extremely absorbent bio-sponge primarily based on carboxymethyl chitosan/poly-γ-glutamic acid/platelet-rich plasma for hemostasis and wound therapeutic. Int J Biol Macromol. 2023;247:125754.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes improve periodontal ligament cell features and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Zhao J, Xie P, Wang S. Biomedical functions of electrets: latest advance and future views. J Funct Biomater. 2023;14:320.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu B, Qiao Z, Cui J, Lian M, Han Y, Zhang X, Wang W, Yu X, Yu H, Wang X, Lin Ok. A number-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomater. 2021;276:120997.

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: what have we discovered about their connection and their therapy? Periodontol 2000. 2021;87:181–203.

    Article 
    PubMed 

    Google Scholar
     

  • Ray RR. Periodontitis: an oral illness with extreme penalties. Appl Biochem Biotechnol. 2023;195:17–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman KL, Kamada N. Pathogenic associations between oral and gastrointestinal ailments. Traits Mol Med. 2022;28:1030–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li B, Xin Z, Gao S, Li Y, Guo S, Fu Y, Xu R, Wang D, Cheng J, Liu L, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls irritation decision of diabetic periodontitis. Theranostics. 2023;13:231–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guru SR, Aghanashini S. Impression of scaling and root planing on salivary and serum plasminogen activator inhibitor-1 expression in sufferers with periodontitis with and with out sort 2 diabetes mellitus. J Periodontol. 2023;94:20–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu CZ, Yuan YH, Liu HH, Li SS, Zhang BW, Chen W, An ZJ, Chen SY, Wu YZ, Han B, et al. Epidemiologic relationship between periodontitis and kind 2 diabetes mellitus. BMC Oral Well being. 2020;20:204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Yang Y, Yu J, Ding R, Pei D, Zhang Y, He G, Cheng Y, Li A. Injectable hydrogels with excessive drug loading by B-N coordination and ROS-triggered drug launch for environment friendly therapy of persistent periodontitis in diabetic rats. Biomaterials. 2022;282:121387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Chang X, Ma Q, Solar B, Li H, Zhou J, Hu Y, Yang X, Li J, Chen X, Track J. Bioinspired drug-delivery system emulating the pure bone therapeutic cascade for diabetic periodontal bone regeneration. Bioact Mater. 2023;21:324–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Hajishengallis G, Chavakis T. Native and systemic mechanisms linking periodontal illness and inflammatory comorbidities. Nat Rev Immunol. 2021;21:426–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inchingolo AD, Inchingolo AM, Malcangi G, Avantario P, Azzollini D, Buongiorno S, Viapiano F, Campanelli M, Ciocia AM, De Leonardis N, et al. Results of resveratrol, curcumin and quercetin supplementation on bone metabolism—a scientific evaluate. Vitamins. 2022;14:3519.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao JH, Xue R, He B. Quercetin protects oral mucosal keratinocytes in opposition to lipopolysaccharide-induced inflammatory toxicity by suppressing the AKT/AMPK/mTOR pathway. Immunopharmacol Immunotoxicol. 2021;43:519–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taskan MM, Gevrek F. Quercetin decreased alveolar bone loss and apoptosis in experimentally induced periodontitis mannequin in wistar rats. Antiinflamm Antiallergy Brokers Med Chem. 2020;19:436–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattarai G, Poudel SB, Kook SH, Lee JC. Resveratrol prevents alveolar bone loss in an experimental rat mannequin of periodontitis. Acta Biomater. 2016;29:398–408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: a evaluate of experimental research and mechanisms associated to periodontitis therapy. J Periodontal Res. 2021;56:837–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng XY, Mao CY, Qiao H, Zhang X, Yu L, Wang TY, Lu EY. Plumbagin suppresses persistent periodontitis in rats through down-regulation of TNF-alpha, IL-1beta and IL-6 expression. Acta Pharmacol Sin. 2017;38:1150–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments