Donaldson, Ok., Murphy, F. A., Rodger, D. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium a assessment of the speculation concerning the position of lengthy fibre retention within the parietal pleura, irritation and mesothelioma. Half. Fibre Toxicol. 7, 5 (2010).
Mossman, B. T. et al. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation publicity to asbestos. J. Toxicol. Environ. Well being B Crit. Rev. 14, 76–121 (2011).
Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W. & Buchanan, P. Lung most cancers: biology and remedy choices. Biochim. Biophys. Acta 1856, 189–210 (2015).
Landrigan, P. J. et al. The Lancet Fee on air pollution and well being. Lancet 391, 462–512 (2018).
Abbate, C. et al. Adjustments induced by publicity of the human lung to glass fiber-reinforced plastic. Environ. Well being Perspect. 114, 1725–1729 (2006).
Bernstein, D. M. Artificial vitreous fibers: a assessment toxicology, epidemiology and laws. Crit. Rev. Toxicol. 37, 839–886 (2007).
Ferreira, A. S. et al. Case report: analytical electron microscopy of lung granulomas related to publicity to coating supplies carried by glass wool fibers. Environ. Well being Perspect. 118, 249–252 (2010).
Padmore, T., Stark, C., Turkevich, L. & Champion, J. A. Quantitative evaluation of the position of fiber size on phagocytosis and inflammatory response by alveolar macrophages. Biochim. Biophys. Acta 1861, 58–67 (2017).
Poland, C. A. et al. Carbon nanotubes launched into the belly cavity of mice present asbestos-like pathogenicity in a pilot examine. Nat. Nanotechnol. 3, 423–428 (2008).
Ryman-Rasmussen, J. P. et al. Inhaled carbon nanotubes attain the subpleural tissue in mice. Nat. Nanotechnol. 4, 747–751 (2009).
Lu, X. et al. Lengthy-term pulmonary publicity to multi-walled carbon nanotubes promotes breast most cancers metastatic cascades. Nat. Nanotechnol. 14, 719–727 (2019).
Weisberg, S. P., Ural, B. B. & Farber, D. L. Tissue-specific immunity for a altering world. Cell 184, 1517–1529 (2021).
Cronin, J. G. et al. Nanomaterials and innate immunity: a perspective of the present standing in nanosafety. Chem. Res. Toxicol. 33, 1061–1073 (2020).
Suzuki, T., Hidaka, T., Kumagai, Y. & Yamamoto, M. Environmental pollution and the immune response. Nat. Immunol. 21, 1486–1495 (2020).
Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).
Saito, N. et al. Protected scientific use of carbon nanotubes as revolutionary biomaterials. Chem. Rev. 114, 6040–6079 (2014).
Qi, Y. T. et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species manufacturing with a nanoelectrochemical sensor. J. Am. Chem. Soc. 144, 9723–9733 (2022).
Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: ideas and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).
Amatore, C., Arbault, S., Collignon, M. & Lemaître, F. Electrochemical monitoring of single cell secretion vesicular exocytosis and oxidative stress. Chem. Rev. 108, 2585–2621 (2008).
Azad, N., Rojanasakul, Y. & Vallyathan, V. Irritation and lung most cancers: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Well being B Crit. Rev. 11, 1–15 (2008).
Cheresh, P., Kim, S. J., Tulasiram, S. & Kamp, D. W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta 1832, 1028–1040 (2013).
Moller, P. et al. Position of oxidative stress in carbon nanotube-generated well being results. Arch. Toxicol. 88, 1939–1964 (2014).
Clausmeyer, J. & Schuhmann, W. Nanoelectrodes: functions in electrocatalysis, single-cell evaluation and high-resolution electrochemical imaging. Traits Anal. Chem. 79, 46–59 (2016).
Ying, Y. L., Ding, Z., Zhan, D. & Lengthy, Y. T. Superior electroanalytical chemistry at nanoelectrodes. Chem. Sci. 8, 3338–3348 (2017).
Phan, N. T. N., Li, X. & Ewing, A. G. Measuring synaptic vesicles utilizing mobile electrochemistry and nanoscale molecular imaging. Nat. Rev. Chem. 1, 0048 (2017).
Zhang, X., Hatamie, A. & Ewing, A. G. Nanoelectrochemical evaluation inside a single dwelling cell. Curr. Opin. Electrochem. 22, 94–101 (2020).
Amatore, C. et al. Monitoring in actual time with a microelectrode the discharge of reactive oxygen and nitrogen species by a single macrophage stimulated by its membrane mechanical depolarization. Chembiochem 7, 653–661 (2006).
Amatore, C. et al. Actual-time amperometric evaluation of reactive oxygen and nitrogen species launched by single immunostimulated macrophages. Chembiochem 9, 1472–1480 (2008).
Amatore, C., Arbault, S. & Koh, A. C. W. Simultaneous detection of reactive oxygen and nitrogen species launched by a single macrophage by triple potential-step chronoamperometry. Anal. Chem. 82, 1411–1419 (2010).
Wang, Y. et al. Nanoelectrodes for willpower of reactive oxygen and nitrogen species inside murine macrophages. Proc. Natl Acad. Sci. USA 109, 11534–11539 (2012).
Li, Y. et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J. Am. Chem. Soc. 139, 13055–13062 (2017).
Zhang, X. W. et al. Actual-time intracellular measurements of ROS and RNS in dwelling cells with single core–shell nanowire electrodes. Angew. Chem. Int. Ed. 56, 12997–13000 (2017).
Hu, Ok., Li, Y., Rotenberg, S. A., Amatore, C. & Mirkin, M. V. Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of dwelling macrophages. J. Am. Chem. Soc. 141, 4564–4568 (2019).
Zhang, X. W. et al. Electrochemical monitoring of ROS/RNS homeostasis inside particular person phagolysosomes inside single macrophages. Angew. Chem. Int. Ed. 58, 7753–7756 (2019).
Champion, J. A. & Mitragotri, S. Position of goal geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).
Masters, T. A., Pontes, B., Viasnoff, V., Li, Y. & Gauthier, N. C. Plasma membrane pressure orchestrates membrane trafficking, cytoskeletal reworking, and biochemical signaling throughout phagocytosis. Proc. Natl Acad. Sci. USA 110, 11875–11880 (2013).
Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639–649 (2008).
Freeman, S. A. & Grinstein, S. Phagocytosis: receptors, sign integration, and the cytoskeleton. Immunol. Rev. 262, 193–215 (2014).
Krendel, M. & Gauthier, N. C. Constructing the phagocytic cup on an actin scaffold. Curr. Opin. Cell Biol. 77, 102112 (2022).
Schroder, Ok., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an summary of alerts, mechanisms and features. J. Leukoc. Biol. 75, 163–189 (2004).
Aktan, F. iNOS-mediated nitric oxide manufacturing and its regulation. Life Sci. 75, 639–653 (2004).
Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: an replace. Traits Immunol. 36, 161–178 (2015).
Decoursey, T. E. & Ligeti, E. Regulation and termination of NADPH oxidase exercise. Chem. Res. Toxicol. 62, 2173–2193 (2005).
Morgan, M. J. & Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).
Neupane, A. S. et al. Patrolling alveolar macrophages conceal micro organism from the immune system to take care of homeostasis. Cell 183, 110–125 (2020).
Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in well being, fibrosis, and most cancers. Immunity 54, 903–915 (2021).
Amatore, C., Deakin, M. R. & Wightman, R. M. Electrochemical kinetics at microelectrodes. Half I. Quasi-reversible electron switch at cylinders. J. Electroanal. Chem. 206, 23–36 (1986).
Amatore, C. in Bodily Electrochemistry: Ideas, Strategies and Purposes (ed. Rubinstein, I.) Ch. 4 (Marcel Dekker, 1995).
Amatore, C. et al. Evaluation of particular person biochemical occasions based mostly on synthetic synapses utilizing ultramicroelectrodes: mobile oxidative burst. Faraday Focus on. 116, 319–333 (2000).
Amatore, C. & Fosset, B. Equivalence between electrodes of various shapes between fantasy and actuality. Anal. Chem. 68, 4377–4388 (1996).
Zhang, N., Ding, E., Feng, X., Xu, Y. & Cai, H. Synthesis, characterizations of dye-doped silica nanoparticles and their utility in labeling cells. Colloids Surf. B 89, 133–138 (2012).
Duan, S. et al. Uterine metabolic dysfunction induced by silica nanoparticles: biodistribution and bioactivity revealed by labeling with FITC. J. Nanobiotechnol. 19, 62 (2021).