Gold, P. & Freedman, S. O. Demonstration of tumor-specific antigens in human colonic cardinomata by immunological tolerance and absorption methods. J. Exp. Med. 121, 439–462 (1965).
Extensive, L., Roos, P. & Gemzell, C. Immunological willpower of human pituitary luteinizing hormone (LH). Acta Endocrinol. 37, 445–449 (1961).
LaDue, J. S., Wróblewski, F. & Karmen, A. Serum glutamic oxaloacetic transaminase exercise in human acute transmural myocardial infarction. Science 120, 497–499 (1954).
Raizada, A. et al. Mind kind natriuretic peptide (BNP)—as marker of latest millennium in analysis of congestive coronary heart failure. Indian J. Clin. Biochem. 22, 4–9 (2007).
Montalescot, G., Guedeney, P. & Tijssen, J. A multi-biomarker rating for a world strategy of threat: time for a change?. J. Am. Coll. Cardiol. 80, 898–901 (2022).
Hye, A. et al. Proteome-based plasma biomarkers for Alzheimer’s illness. Mind 129, 3042–3050 (2006).
Ueno, I., Sakai, T., Yamaoka, M., Yoshida, R. & Tsugita, A. Evaluation of blood plasma proteins in sufferers with Alzheimer’s illness by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis 21, 1832–1845 (2000).
Cao, M. C. et al. Serum biomarkers of neuroinflammation and blood–mind barrier leakage in amyotrophic lateral sclerosis. BMC Neurol. 22, 216–216 (2022).
de Ávila, B. E.-F. et al. Multiplexed willpower of amino-terminal pro-B-type natriuretic peptide and C-reactive protein cardiac biomarkers in human serum at a disposable electrochemical magnetoimmunosensor. Electroanalysis 26, 254–261 (2014).
Sonawane, M. D., Nimse, S. B., Music, Ok. S. & Kim, T. Multiplex detection of cardiac biomarkers. Anal. Strategies 9, 3773–3776 (2017).
Zhang, D. et al. Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral stream assay. Sens. Actuators B 277, 502–509 (2018).
An, B. et al. An antibody-free platform for multiplexed, delicate quantification of protein biomarkers in complicated biomatrices. J. Chromatogr. A 1676, 463261–463261 (2022).
Najjar, D. et al. A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat. Biomed. Eng. 6, 968–978 (2022).
Leandersson, P., Åkesson, A., Hedenfalk, I., Malander, S. & Borgfeldt, C. A multiplex biomarker assay improves the diagnostic efficiency of HE4 and CA125 in ovarian tumor sufferers. PLoS ONE 15, e0240418 (2020).
Ma, S. et al. Multiplexed serum biomarkers for the detection of lung most cancers. eBioMedicine 11, 210–218 (2016).
Opstal-van Winden, A. et al. A bead-based multiplexed immunoassay to judge breast most cancers biomarkers for early detection in pre-diagnostic serum. Int. J. Mol. Sci. 13, 13587–13604 (2012).
Pan, S. et al. Multiplex focused proteomic assay for biomarker detection in plasma: a pancreatic most cancers biomarker case research. J. Proteome Res. 11, 1937–1948 (2012).
Cook dinner, D. B. et al. Multiplexing protein and gene degree measurements on a single Luminex platform. Strategies 158, 27–32 (2019).
Wilson, D. H. et al. The Simoa HD-1 analyzer: a novel absolutely automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21, 533–547 (2016).
Gold, L. et al. Aptamer-based multiplexed proteomic expertise for biomarker discovery. PLoS ONE 5, e15004 (2010).
Rohloff, J. C. et al. Nucleic acid ligands with protein-like aspect chains: modified aptamers and their use as diagnostic and therapeutic brokers. Mol. Ther. Nucleic Acids 3, e201 (2014).
O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Entrance. Endocrinol. 9, 402–402 (2018).
Romaine, S. P. R., Tomaszewski, M., Condorelli, G. & Samani, N. J. MicroRNAs in heart problems: an introduction for clinicians. Coronary heart 101, 921–928 (2015).
Zhou, S. S. et al. miRNAS in cardiovascular illnesses: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 39, 1073–1084 (2018).
Schueller, F. et al. The position of miRNAs within the pathophysiology of liver illnesses and toxicity. Int. J. Mol. Sci. 19, 261 (2018).
Connor, Ok. L. & Denby, L. MicroRNAs as non-invasive biomarkers of renal illness. Nephrol. Dial. Transplant. 36, 428–429 (2021).
Cao, D. D., Li, L. & Chan, W. Y. MicroRNAs: key regulators within the central nervous system and their implication in neurological illnesses. Int. J. Mol. Sci. 17, 842 (2016).
Peng, Y. & Croce, C. M. The position of MicroRNAs in human most cancers. Sign Transduct. Goal. Ther. 1, 15004 (2016).
Qin, S. & Zhang, C. MicroRNAs in vascular illness. J. Cardiovasc. Pharmacol. 57, 8–12 (2011).
Mestdagh, P. et al. Analysis of quantitative miRNA expression platforms within the microRNA high quality management (miRQC) research. Nat. Strategies 11, 809–815 (2014).
Lin, X., Ivanov, A. P. & Edel, J. B. Selective single molecule nanopore sensing of proteins utilizing DNA aptamer-functionalised gold nanoparticles. Chem. Sci. 8, 3905–3912 (2017).
Ren, R. et al. Nanopore prolonged field-effect transistor for selective single-molecule biosensing. Nat. Commun. 8, 586 (2017).
Wanunu, M. et al. Speedy digital detection of probe-specific microRNAs utilizing skinny nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).
Xue, L. et al. Stable-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).
Sultan, M. & Kanavarioti, A. Nanopore device-based fingerprinting of RNA oligos and microRNAs enhanced with an osmium tag. Sci. Rep. 9, 14180 (2019).
Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel supplies, strategies, and purposes. Chem. Soc. Rev. 42, 15–28 (2012).
Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).
Ren, R. et al. Selective sensing of proteins utilizing aptamer functionalized nanopore prolonged field-effect transistors. Small Strategies 4, 2000356 (2020).
Tan, S. et al. DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor. Nanoscale Res. Lett. 10, 205 (2015).
Wei, R., Gatterdam, V., Wieneke, R., Tampé, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).
Sze, J. Y. Y., Ivanov, A. P., Cass, A. E. G. & Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum utilizing aptamer modified DNA carriers. Nat. Commun. 8, 1552 (2017).
Cai, S., Sze, J. Y. Y., Ivanov, A. P. & Edel, J. B. Small molecule electro-optical binding assay utilizing nanopores. Nat. Commun. 10, 1797 (2019).
Cai, S. et al. Single-molecule amplification-free multiplexed detection of circulating microRNA most cancers biomarkers from serum. Nat. Commun. 12, 3515 (2021).
Liu, H. et al. Expression and purification of a novel mycobacterial porin MspA mutant in E. coli. J. Nanosci. Nanotechnol. 17, 9125–9129 (2017).
Deamer, D., Akeson, M. & Branton, D. Three many years of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).
One expertise, one platform for all of your biology. Oxford Nanopore Applied sciences https://nanoporetech.com/purposes/methods/short-fragment-mode (2023).
Kamanu, T. Ok. Ok., Radovanovic, A., Archer, J. A. C. & Bajic, V. B. Exploration of miRNA households for hypotheses era. Sci. Rep. 3, 2940 (2013).
Craig, J. M. et al. Revealing dynamics of helicase translocation on single-stranded DNA utilizing high-resolution nanopore tweezers. Proc. Natl Acad. Sci. USA 114, 11932–11937 (2017).
Chen, C. et al. Actual-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 33, e179 (2005).