Yuan Okay, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/micromotors for prognosis and remedy of most cancers and infectious ailments. Chem Eur J. 2020;26:2309–26.
Schiffman JD, Fisher PG, Gibbs P. Early Detection of most cancers: previous, current, and future. Am Soc Clin Oncol Educ E-book. 2015;35:57–65.
Delgado-Viscogliosi P, Solignac L, Delattre J-M. Viability PCR, a culture-independent technique for speedy and selective quantification of viable Legionella pneumonia cells in environmental water samples. Appl Environ Microb. 2009;75:3502.
Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and creating diagnostic applied sciences for urinary tract infections. Nat Rev Urol. 2017;14:296–310.
Cialla-Might D, Zheng XS, Weber Okay, Popp J. Current progress in surface-enhanced Raman spectroscopy for organic and biomedical purposes: from cells to clinics. Chem Soc Rev. 2017;46:3945–61.
Li X, Ye S, Luo X. Delicate SERS detection of miRNA by way of enzyme-free DNA machine sign amplification. Chem Commun. 2016;52:10269–72.
Demirel G, Usta H, Yilmaz M, Celik M, Alidagi HA, Buyukserin F. Floor-enhanced Raman spectroscopy (SERS): an journey from plasmonic metals to natural semiconductors as SERS platforms. J Mater Chem C. 2018;6:5314–35.
Kneipp Okay, Ozaki Y, Tian ZQ. Current developments in plasmon-supported Raman spectroscopy. World Scientific (Europe). London; 2017.
Fateixa S, Nogueira HIS, Trindade T. Hybrid nanostructures for SERS: supplies growth and chemical detection. Phys Chem Phys. 2015;17:21046–71.
Guo H, He L, Xing B. Purposes of surface-enhanced Raman spectroscopy within the evaluation of nanoparticles within the setting. Environ Sci Nano. 2017;4:2093–107.
Ren X, Cheshari EC, Qi J, Li X. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for delicate detection of bisphenol A. Microchim Acta. 2018;185:242.
Bi L, Wang Y, Yang Y, Li Y, Mo S, Zheng Q, et al. Extremely delicate and reproducible SERS sensor for organic pH detection primarily based on a uniform gold nanorod array platform. ACS Appl Mater Interfaces. 2018;10:15381–7.
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, et al. Exploring the margins of SERS in sensible area: An rising diagnostic modality for contemporary biomedical purposes. Biomaterials. 2018;181:140–81.
Hong Y, Zhou X, Xu B, Huang Y, He W, Wang S, et al. Optoplasmonic hybrid Supplies for hint detection of methamphetamine in organic fluids by means of SERS. ACS Appl Mater Interfaces. 2020;12:24192–200.
Shen J, Zhou Y, Huang J, Zhu Y, Zhu J, Yang X, et al. In-situ SERS monitoring of response catalyzed by multifunctional Fe3O4@TiO2@Ag-Au microspheres. Appl Catal B: Environ. 2017;205:11–8.
Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Quick enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy primarily based on Au nanoparticles adorned glycidyl methacrylate–ethylene dimethacrylate materials. Meals Management. 2014;46:108–14.
Smith WE. Sensible understanding and use of surface-enhanced Raman scattering/surface-enhanced resonance Raman scattering in chemical and organic evaluation. Chem Soc Rev. 2008;37:955–64.
Moore TAO, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma BAO. In vitro and in vivo SERS biosensing for illness prognosis. Biosensors. 2018;8:2079–6374.
Sinha SS, Jones S, Pramanik A, Ray PC. Nanoarchitecture-based SERS for biomolecular fingerprinting and label-free illness markers prognosis. Acc Chem Res. 2016;49:2725–35.
Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, et al. Growth of biocompatible SERS nanotag with elevated stability by chemisorption of reporter molecule for in vivo most cancers detection. Biosens Bioelectron. 2010;26:398–403.
Vendrell M, Maiti KK, Dhaliwal Okay, Chang Y-T. Floor-enhanced Raman scattering in most cancers detection and imaging. Traits Biotechnol. 2013;31:249–57.
Wu X, Luo L, Yang S, Ma X, Li Y, Dong C, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells within the blood. ACS Appl Mater Interfaces. 2015;7:9965–71.
Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46:4042–76.
Liu B, Thielert B, Reutter A, Stosch R, Lemmens P. Quantifying the contribution of chemical enhancement to SERS: A mannequin primarily based on the evaluation of light-induced degradation processes. J Phys Chem C. 2019;123:19119–24.
Fan W, Yue-E M, Ling X, Liu T. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering. Chin J Chem. 2016;34:73–81.
Li X, Li J, Zhou X, Ma Y, Zheng Z, Duan X, et al. Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface-enhanced Raman spectroscopy. Carbon. 2014;66:713–9.
Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition components with nanomaterials for micro organism sensing. Chem Soc Rev. 2017;46:1272–83.
Qiu Y, Deng D, Deng Q, Wu P, Zhang H, Cai C. Synthesis of magnetic Fe3O4–Au hybrids for delicate SERS detection of most cancers cells at low abundance. J Mater Chem B. 2015;3:4487–95.
Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, et al. Purposes of Raman spectroscopy in most cancers prognosis. Most cancers Metast Rev. 2018;37:691–717.
Geen KG, Kumar D, Subrahmanyam S, Shanmugam Okay. Raman fingerprints in detection of breast most cancers. J Biosens Biomark Diagnos. 2016;1:1–11.
Han XX, Ozaki Y, Zhao B. Label-free detection in organic purposes of surface-enhanced Raman scattering. Traits Anal Chem. 2012;38:67–78.
Gahlaut SK, Savargaonkar D, Sharan C, Yadav S, Mishra P, Singh JP. SERS platform for dengue prognosis from medical samples using a handheld Raman spectrometer. Anal Chem. 2020;92:2527–34.
Wu L, Wang Z, Zhang Y, Fei J, Chen H, Zong S, et al. In situ probing of cell-cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic medication. Nano Res. 2017;10:584–94.
Bodelón G, Montes-García V, López-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN, et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater. 2016;15:1203–11.
Cao X, Wang Z, Bi L, Zheng J. Label-free detection of human serum utilizing surface-enhanced Raman spectroscopy primarily based on extremely branched gold nanoparticle substrates for discrimination of non-small cell lung most cancers. J Chem. 2018;2018:9012645.
González-Solís J, Luévano Colmenero G, Vargas-Mancilla J. Floor enhanced Raman spectroscopy in breast most cancers cells. Laser Ther. 2013;22:37–42.
Cui S, Zhang S, Yue S. Raman spectroscopy and imaging for most cancers prognosis. J Healthc Eng. 2018;2018:8619342.
Nguyen BH, Nguyen VH, Tran HN. Wealthy number of substrates for surface-enhanced Raman spectroscopy. Adv Nat Sci Nanosci. 2016;7: 033001.
Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, et al. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS exercise. Langmuir. 2003;19:4285–90.
dos Santos JDS, Alvarez-Puebla RA, Oliveira JON, Aroca RF. Controlling the dimensions and form of gold nanoparticles in fulvic acid colloidal options and their optical characterization utilizing SERS. J Mater Chem. 2005;15:3045–9.
Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Gold nanostars for environment friendly in vitro and in vivo real-time SERS detection and drug supply by way of plasmonic-tunable Raman/FTIR imaging. Biomaterials. 2016;106:87–97.
Tune C, Yang B, Zhu Y, Yang Y, Wang L. Ultrasensitive silver nanorod array SERS sensor for mercury ions. Biosens Bioelectron. 2017;87:59–65.
Kim DJ, Jeon TY, Park S-G, Han HJ, Im SH, Kim D-H, et al. Uniform microgels containing agglomerates of silver nanocubes for molecular size-selectivity and excessive SERS exercise. Small. 2017;13:1604048.
Yan T, Zhang L, Jiang T, Bai Z, Yu X, Dai P, et al. Controllable SERS efficiency for the versatile paper-like movies of lowered graphene oxide. Appl Surf Sci. 2017;419:373–81.
Shen Y, Miao P, Hu C, Wu J, Gao M, Xu P. SERS-based plasmon-driven response and molecule detection on a single Ag@MoS2 microsphere: Impact of thickness and crystallinity of MoS2. ChemCatChem. 2018;10:3520–5.
Jiang R, Li B, Fang C, Wang J. Metallic/semiconductor hybrid nanostructures for plasmon-enhanced purposes. Adv Mater. 2014;26:5274–309.
He L, Liu C, Hu J, Gu W, Zhang Y, Dong L, et al. Hydrophobic ligand-mediated hierarchical Cu nanoparticles on lowered graphene oxides for SERS platform. CrystEngComm. 2016;18:7764–71.
Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, et al. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale. 2015;7:20188–96.
Wei H, Leng W, Tune J, Willner MR, Marr LC, Zhou W, et al. Improved quantitative SERS enabled by floor plasmon enhanced elastic gentle scattering. Anal Chem. 2018;90:3227–37.
Fu HY, Lang XY, Hou C, Wen Z, Zhu YF, Zhao M, et al. Nanoporous Au/SnO/Ag heterogeneous movies for ultrahigh and uniform surface-enhanced Raman scattering. J Mater Chem C. 2014;2:7216–22.
Wu LA, Li WE, Lin DZ, Chen YF. Three-dimensional SERS substrates fashioned with plasmonic core-satellite nanostructures. Sci Rep. 2017;7:13066.
Shi R, Liu X, Ying Y. Going through challenges in real-life utility of surface-enhanced Raman scattering: Design and nanofabrication of surface-enhanced Raman scattering substrates for speedy subject take a look at of meals contaminants. J Agr Meals Chem. 2018;66:6525–43.
Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, et al. Designing surface-enhanced Raman scattering (SERS) platforms past hotspot engineering: rising alternatives in analyte manipulations and hybrid supplies. Chem Soc Rev. 2019;48:731–56.
Wu L, Wang W, Zhang W, Su H, Liu Q, Gu J, et al. Extremely delicate, reproducible and uniform SERS substrates with a excessive density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic supplies. NPG Asia Mater. 2018;10:e462–562.
Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, et al. Tremendous-hydrophobic surfaces: From pure to synthetic. Adv Mater. 2002;14:1857–60.
Bhushan B. Adhesion of multi-level hierarchical attachment techniques in gecko toes. J Adhes Sci Technol. 2007;21:1213–58.
Biró LP, Kertész Okay, Vértesy Z, Márk GI, Bálint Z, Lousse V, et al. Dwelling photonic crystals: Butterfly scales – nanostructure and optical properties. Mat Sci Eng C-Mater. 2007;27:941–6.
Garrett NL, Sekine R, Dixon MWA, Tilley L, Bambery KR, Wooden BR. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys. 2015;17:21164–8.
Zhang M, Meng J, Wang D, Tang Q, Chen T, Rong S, et al. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for environment friendly hint chemical detection. J Mater Chem C. 2018;6:1933–43.
Cloth L. SERS Tags: The subsequent promising instrument for customized most cancers detection? ChemNanoMat. 2016;2:249–58.
Guo M, Dong J, Xie W, Tao L, Lu W, Wang Y, et al. SERS tags-based novel monodispersed hole gold nanospheres for extremely delicate immunoassay of CEA. J Mater Sci. 2015;50:3329–36.
Chen M, Zhang L, Gao M, Zhang X. Excessive-sensitive bioorthogonal SERS tag for dwell most cancers cell imaging by self-assembling core-satellites construction gold-silver nanocomposite. Talanta. 2017;172:176–81.
Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B. Floor-enhanced Raman spectroscopy: advantages, trade-offs and future developments. Chem Sci. 2020;11:4563–77.
Scatena E, Baiguera S, Del Gaudio C. Raman spectroscopy and aptamers for a label-free method: Diagnostic and utility instruments. J Healthc Eng. 2019;2019:2815789.
Pahlow S, Meisel S, Cialla-Might D, Weber Okay, Rösch P, Popp J. Isolation and identification of micro organism by way of Raman spectroscopy. Adv Drug Ship Rev. 2015;89:105–20.
Rinken T, Kivirand Okay. Biosensing applied sciences for the detection of pathogens: A potential method for speedy evaluation. IntechOpen: Croatia; 2018.
Zhang J, Ma X, Wang Z. Actual-time and in-situ monitoring of Abrin induced cell apoptosis through the use of SERS spectroscopy. Talanta. 2019;195:8–16.
Zheng X-S, Jahn IJ, Weber Okay, Cialla-Might D, Popp J. Label-free SERS in organic and biomedical purposes: Current progress, present challenges, and alternatives. Spectrochim Acta A. 2018;197:56–77.
Guo J, Liu Y, Chen Y, Li J, Ju H. A multifunctional SERS sticky word for real-time quorum sensing tracing and inactivation of bacterial biofilms. Chem Sci. 2018;9:5906–11.
Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson J-F. Dynamic-SERS optophysiology: A nanosensor for monitoring cell secretion occasions. Nano Lett. 2016;16:3866–71.
Cabello G, Nwoko KC, Marco JF, Sánchez-Arenillas M, Méndez-Torres AM, Feldmann J, et al. Cu@Au self-assembled nanoparticles as SERS-active substrates for (bio)molecular sensing. J Alloy Compd. 2019;791:184–92.
Majumdar D, Singha A, Mondal PK, Kundu S. DNA-mediated wirelike clusters of silver nanoparticles: An ultrasensitive SERS substrate. ACS Appl Mater Interfaces. 2013;5:7798–807.
Khlebtsov B, Khanadeev V, Khlebtsov N. Floor-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016;9:2303–18.
Gao Z, Burrows ND, Valley NA, Schatz GC, Murphy CJ, Haynes CL. In answer SERS sensing utilizing mesoporous silica-coated gold nanorods. Analyst. 2016;141:5088–95.
Garcia-Leis A, Garcia-Ramos JV, Sanchez-Cortes S. Silver nanostars with excessive SERS efficiency. J Phys Chem C. 2013;117:7791–5.
Niu W, Chua YAA, Zhang W, Huang H, Lu X. Extremely symmetric gold nanostars: Crystallographic management and surface-enhanced Raman scattering property. J Am Chem Soc. 2015;137:10460–3.
Jiang B, Xu L, Chen W, Zou C, Yang Y, Fu Y, et al. Ag+-assisted heterogeneous progress of concave Pd@Au nanocubes for surface-enhanced Raman scattering (SERS). Nano Res. 2017;10:3509–21.
Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Delicate and particular detection of explosives in answer and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale. 2017;9:16459–66.
Wang P, Pang S, Chen J, McLandsborough L, Nugen SR, Fan M, et al. Label-free mapping of single bacterial cells utilizing surface-enhanced Raman spectroscopy. Analyst. 2016;141:1356–62.
Reyes M, Piotrowski M, Ang SK, Chan J, He S, Chu JJH, et al. Exploiting the anti-aggregation of gold nanostars for speedy detection of hand, foot, and mouth illness inflicting enterovirus 71 utilizing surface-enhanced Raman spectroscopy. Anal Chem. 2017;89:5373–81.
Von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater. 2009;21:3175–80.
Search engine optimisation SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, et al. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic remedy of most cancers cells utilizing methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35:3309–18.
Gao Y, Li Y, Wang Y, Chen Y, Gu J, Zhao W, et al. Managed synthesis of multilayered gold nanoshells for enhanced photothermal remedy and SERS detection. Small. 2015;11:77–83.
Chen J, Sheng Z, Li P, Wu M, Zhang N, Yu XF, et al. Indocyanine green-loaded gold nanostars for delicate SERS imaging and subcellular monitoring of photothermal remedy. Nanoscale. 2017;9:11888–901.
Qi G, Zhang Y, Xu S, Li C, Wang D, Li H, et al. Nucleus and mitochondria concentrating on theranostic plasmonic surface-enhanced Raman spectroscopy nanoprobes as a method for revealing molecular stress response variations in hyperthermia cell demise between cancerous and regular cells. Anal Chem. 2018;90:13356–64.
Xing Y, Cai Z, Xu M, Ju W, Luo X, Hu Y, et al. Raman remark of a molecular signaling pathway of apoptotic cells induced by photothermal remedy. Chem Sci. 2019;10:10900–10.
Ali MRK, Wu Y, Han T, Zang X, Xiao H, Tang Y, et al. Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal most cancers cell demise mechanisms related to gold nanorod photothermal remedy. J Am Chem Soc. 2016;138:15434–42.
Gao W, Li B, Yao R, Li Z, Wang X, Dong X, et al. Intuitive label-free SERS detection of micro organism utilizing aptamer-based in situ silver nanoparticles synthesis. Anal Chem. 2017;89:9836–42.
Wang J, Koo KM, Wee EJH, Wang Y, Trau M. A nanoplasmonic label-free surface-enhanced Raman scattering technique for non-invasive most cancers genetic subtyping in affected person samples. Nanoscale. 2017;9:3496–503.
Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM. Identification and quantitation of pathogenic micro organism by way of in-situ formation of silver nanoparticles on cell partitions, and their detection by way of SERS. Microchim Acta. 2017;184:219–27.
Koo KM, Wang J, Richards RS, Farrell A, Yaxley JW, Samaratunga H, et al. Design and medical verification of surface-enhanced Raman spectroscopy diagnostic know-how for particular person most cancers danger prediction. ACS Nano. 2018;12:8362–71.
Hong Y, Li Y, Huang L, He W, Wang S, Wang C, et al. Label-free prognosis for colorectal most cancers by means of espresso ring-assisted surface-enhanced Raman spectroscopy on blood serum. J Biophotonics. 2020;13: e201960176.
He S, Kyaw YME, Tan EKM, Bekale L, Kang MWC, Kim SSY, et al. Quantitative and label-free detection of protein kinase A exercise primarily based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem. 2018;90:6071–80.
Prakash O, Sil S, Verma T, Umapathy S. Direct detection of micro organism utilizing positively charged Ag/Au bimetallic nanoparticles: A label-free surface-enhanced Raman scattering examine coupled with multivariate evaluation. J Phys Chem C. 2020;124:861–9.
Wang C, Wang J, Li M, Qu X, Zhang Okay, Rong Z, et al. A speedy SERS technique for label-free micro organism detection utilizing polyethyleneimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst. 2016;141:6226–38.
Fraire JC, Stremersch S, Bouckaert D, Monteyne T, De Beer T, Wuytens P, et al. Improved label-free identification of particular person exosome-like vesicles with Au@Ag nanoparticles as SERS substrate. ACS Appl Mater Interfaces. 2019;11:39424–35.
Karthick Kannan P, Shankar P, Blackman C, Chung CH. Current advances in 2D inorganic nanomaterials for SERS sensing. Adv Mater. 2019;31:1803432.
Kim YK, Kim S, Cho S-P, Jang H, Huh H, Hong BH, et al. Facile one-pot photosynthesis of secure Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized floor plasmon resonance properties. J Mater Chem C. 2017;5:10016–22.
Zeng F, Xu D, Zhan C, Liang C, Zhao W, Zhang J, et al. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug supply. ACS Appl Nano Mater. 2018;1:2748–53.
Zhou Y, Huang J, Shi W, Li Y, Wu Y, Liu Q, et al. Ecofriendly and environment-friendly synthesis of size-controlled silver nanoparticles/graphene composites for antimicrobial and SERS actions. Appl Surf Sci. 2018;457:1000–8.
Meng X, Wang H, Chen N, Ding P, Shi H, Zhai X, et al. A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and seize, discrimination, and inactivation of micro organism. Anal Chem. 2018;90:5646–53.
Huang D, Zhuang Z, Wang Z, Li S, Zhong H, Liu Z, et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for speedy detection of foodborne micro organism. Appl Surf Sci. 2019;497: 143825.
Henan Z, Wen Z, Zhiming L, Deqiu H, Wolun Z, Binggang Y, et al. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites by way of surface-enhanced Raman spectroscopy. Nanophotonics. 2018;7:1651–62.
Yang G, Liu Z, Li Y, Hou Y, Fei X, Su C, et al. Facile synthesis of black phosphorus–Au nanocomposites for enhanced photothermal most cancers remedy and surface-enhanced Raman scattering evaluation. Biomater Sci. 2017;5:2048–55.
Li D, Yu H, Guo Z, Li S, Li Y, Guo Y, et al. SERS evaluation of carcinoma-associated fibroblasts in a tumor microenvironment primarily based on focused 2D nanosheets. Nanoscale. 2020;12:2133–41.
Wang J, Liu R, Zhang C, Han G, Zhao J, Liu B, et al. Synthesis of g-C3N4 nanosheet/Au@Ag nanoparticle hybrids as SERS probes for most cancers cell diagnostics. RSC Adv. 2015;5:86803–10.
Wang YN, Zhang Y, Zhang WS, Xu ZR. A SERS substrate of mesoporous g-C3N4 embedded with in situ grown gold nanoparticles for delicate detection of 6-thioguanine. Sensors Actuat B Chem. 2018;260:400–7.
Zhang H, Zhang W, Gao X, Man P, Solar Y, Liu C, et al. Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS utility. Sensors Actuat B Chem. 2019;282:809–17.
Liu J, Zheng T, Tian Y. Functionalized h-BN nanosheets as a theranostic platform for SERS real-time monitoring of microRNA and photodynamic remedy. Angew Chem Int Ed. 2019;58:7757–61.
Pramanik A, Davis D, Patibandla S, Begum S, Ray P, Gates Okay, et al. A WS2-gold nanoparticle heterostructure-based novel SERS platform for the speedy identification of antibiotic-resistant pathogens. Nanoscale Adv. 2020;2:2025–33.
Kavyani S, Dadvar M, Modarress H, Amjad-Iranagh S. Molecular perspective mechanism for drug loading on carbon nanotube–dendrimer: A rough-grained molecular dynamics examine. J Phys Chem B. 2018;122:7956–69.
Dinda S, Mandal D, Sarkar S, Das PK. Self-assembled vesicle–carbon nanotube conjugate formation by means of a boronate–diol covalent linkage. Chem Eur J. 2017;23:15194–202.
Liu H, Li Y, Dykes J, Gilliam T, Burnham Okay, Chopra N. Manipulating the functionalization floor of graphene-encapsulated gold nanoparticles with single-walled carbon nanotubes for SERS sensing. Carbon. 2018;140:306–13.
Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube- and graphene-based nanomaterials and purposes in high-voltage supercapacitor: A overview. Carbon. 2019;141:467–80.
Gupta S, Murthy CN, Prabha CR. Current advances in carbon nanotube-based electrochemical biosensors. Int J Biol Macromol. 2018;108:687–703.
Rong G, Corrie SR, Clark HA. In vivo biosensing: Progress and views. ACS Sens. 2017;2:327–38.
Chen Y-C, Younger RJ, Macpherson JV, Wilson NR. Silver-decorated carbon nanotube networks as SERS substrates. J Raman Spectrosc. 2011;42:1255–62.
Qin X, Si Y, Wang D, Wu Z, Li J, Yin Y. Nanoconjugates of Ag/Au/carbon nanotube for alkyne-meditated ratiometric SERS imaging of hypoxia in hepatic ischemia. Anal Chem. 2019;91(7):4529–36.
Jie Z, Zenghe Y, Xiaolei Z, Yong Z. Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an inner customary. Choose Categorical. 2018;26:23534–9.
Teresa D, Rajashekhar Okay, Zhen F, Anant Okay-S, Dulal S, Madan D, Eugene Z, Paresh C-R. Extremely environment friendly SERS substrate for direct detection of explosive TNT utilizing popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid. Analyst. 2012;137:5041–5.
Wei H-N, Peng Z-S, Yang C, Tian Y, Solar L-F, Wang G-T, Liu M. Three-dimensional Au/Ag nanoparticle/crossed carbon nanotube SERS substrate for the detection of combined poisonous molecules. Nanomaterials. 2021;11:2026.
Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G. Graphene-quantum-dot assembled nanotubes: A brand new platform for environment friendly Raman enhancement. ACS Nano. 2012;6:2237–44.
Liu D, Chen X, Hu Y, Solar T, Tune Z, Zheng Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun. 2018;9:193.
Bhunia SK, Zeiri L, Manna J, Nandi S, Jelinek R. Carbon-dot/silver-nanoparticle versatile SERS-active movies. ACS Appl Mater Interfaces. 2016;8:25637–43.
Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, et al. Synthesis of Au NP@MoS2 quantum dots core@shell nanocomposites for SERS bio-analysis and label-free bio-imaging. Supplies. 2017;10:650.
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A overview on surface-enhanced Raman scattering. Biosens. 2019;9:57.
Zhao X, Li M, Xu Z. Detection of foodborne pathogens by surface-enhanced Raman spectroscopy. Entrance Microbiol. 2018;9:1236.
Li J, Dong S, Tong J, Zhu P, Diao G, Yang Z. 3D ordered silver nanoshells silica photonic crystal beads for multiplex encoded SERS bioassay. Chem Commun. 2016;52:284–7.
Cho WJ, Kim Y, Kim JK. Ultrahigh-density array of silver nanoclusters for SERS substrate with excessive sensitivity and wonderful reproducibility. ACS Nano. 2012;6:249–55.
Lee SY, Kim SH, Kim MP, Jeon HC, Kang H, Kim HJ, et al. Freestanding and arrayed nanoporous microcylinders for extremely energetic 3D SERS substrate. Chem Mater. 2013;25:2421–6.
Xie X, Pu H, Solar DW. Current advances in nanofabrication strategies for SERS substrates and their purposes within the meals security evaluation. Crit Rev Meals Sci Nutr. 2018;58:2800–13.
Lao Z, Hu Y, Wu D. Fabricating nanogap for SERS by combing laser printing with capillary-force self-assembly on comfortable base. OSA Technical Digest (Optica Publishing Group, 2019). Hawaii United States; 2019. paper NTu4A.8.
Fan M, Andrade GFS, Brolo AG. A overview on the fabrication of substrates for surface-enhanced Raman spectroscopy and their purposes in analytical chemistry. Anal Chim Acta. 2011;693:7–25.
Jiao T, Yan X, Balan L, Stepanov AL, Chen X, Hu MZ. Chemical functionalization, self-assembly, and purposes of nanomaterials and nanocomposites. J Nanomater. 2014;2014: 291013.
Zhao X, Wen J, Zhang M, Wang D, Wang Y, Chen L, et al. Design of hybrid nanostructural arrays to govern SERS-active substrates by nanosphere lithography. ACS Appl Mater Interfaces. 2017;9:7710–6.
Fang X, Zheng C, Yin Z, Wang Z, Wang J, Liu J, et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Appl Mater Interfaces. 2020;12:12345–52.
Petti L, Capasso R, Rippa M, Pannico M, La Manna P, Peluso G, et al. A plasmonic nanostructure fabricated by electron beam lithography as a delicate and extremely homogeneous SERS substrate for bio-sensing purposes. Vib Spectrosc. 2016;82:22–30.
Hasna Okay, Antony A, Puigdollers J, Kumar KR, Jayaraj MK. Fabrication of cost-effective, extremely reproducible giant space arrays of nanotriangular pillars for surface-enhanced Raman scattering substrates. Nano Res. 2016;9:3075–83.
Liu TY, Tsai Okay-T, Wang H-H, Chen Y, Chen Y-H, Chao Y-C, et al. Functionalized arrays of Raman-enhancing nanoparticles for seize and culture-free evaluation of micro organism in human blood. Nat Commun. 2011;2:538.
Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh S-H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv Mater. 2013;25:2678–85.
Rippa M, Castagna R, Pannico M, Musto P, Borriello G, Paradiso R, et al. Octupolar metastructures for a extremely delicate, speedy, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering. ACS Sens. 2017;2:947–54.
Kumar S, Lodhi DK, Goel P, Neeti P, Mishra P, Singh JP. A facile technique for fabrication of buckled PDMS silver nanorod arrays as energetic 3D SERS cages for bacterial sensing. Chem Commun. 2015;51:12411–4.
Paccotti N, Boschetto F, Horiguchi S, Marin E, Chiadò A, Novara C, et al. Label-free SERS discrimination and in situ evaluation of life cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors. 2018;8:131.
Zhang Y, Zeng Q, Li L, Qi M, Qi Q, Li S, et al. Characterization and identification of lung most cancers cells from blood cells with label-free surface-enhanced Raman scattering. Laser Phys. 2019;29: 045602.
Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA. Fast and delicate detection of respiratory virus molecular signatures utilizing a silver nanorod array SERS substrate. Nano Lett. 2006;6:2630–6.
Kahraman M, Wachsmann-Hogiu S. Label-free and direct protein detection on 3D plasmonic nanovoid buildings utilizing surface-enhanced Raman scattering. Anal Chim Acta. 2015;856:74–81.
Guselnikova O, Postnikov P, Pershina A, Svorcik V, Lyutakov O. Categorical and moveable label-free DNA detection and recognition with SERS platform primarily based on useful Au grating. Appl Surf Sci. 2019;470:219–27.
Zhang B, Wang H, Lu L, Ai Okay, Zhang G, Cheng X. Giant-area silver-coated silicon nanowire arrays for molecular sensing utilizing surface-enhanced Raman spectroscopy. Adv Funct Mater. 2008;18:2348–55.
Nam W, Ren X, Tali SAS, Ghassemi P, Kim I, Agah M, et al. Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of residing most cancers cells. Nano Lett. 2019;19:7273–81.
Plou J, García I, Charconnet M, Astobiza I, García-Astrain C, Matricardi C, et al. Multiplex SERS detection of metabolic alterations in tumor extracellular media. Adv Funct Mater. 2020;30:1910335.
Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the excellent properties of the lotus leaf. Beilstein J Nanotech. 2011;2:152–61.
Feng L, Zhang Y, Li M, Zheng Y, Shen W, Jiang L. The structural colour of pink rose petals and their duplicates. Langmuir. 2010;26:14885–8.
Vértesy Z, Bálint Z, Kertész Okay, Vigneron JP, Lousse V, Biró LP. Wing scale microstructures and nanostructures in butterflies − pure photonic crystals. J Microsc. 2006;224:108–10.
Autumn Okay, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, et al. Proof for van der Waals adhesion in gecko setae. Proc Natl Acad Sci. 2002;99:12252.
Huang J-A, Zhang Y-L, Zhao Y, Zhang X-L, Solar M-L, Zhang W. Superhydrophobic SERS chip primarily based on an Ag coated pure taro-leaf. Nanoscale. 2016;8:11487–93.
Chou S-Y, Yu C-C, Yen Y-T, Lin Okay-T, Chen H-L, Su W-F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal Chem. 2015;87:6017–24.
Shao F, Lu Z, Liu C, Han H, Chen Okay, Li W, et al. Hierarchical nanogaps inside bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl Mater Interfaces. 2014;6:6281–9.
Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, et al. Discount of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection. ACS Appl Mater Interfaces. 2013;5:9878–82.
Du J, Cui J, Jing C. Fast in situ identification of arsenic species utilizing a transportable Fe3O4@Ag SERS sensor. Chem Commun. 2014;50:347–9.
Jiang X, Sang Q, Yang M, Du J, Wang W, Yang L, et al. Metallic-free SERS substrate primarily based on rGO–TiO2–Fe3O4 nanohybrid: contribution from interfacial cost switch and magnetic controllability. Phys Chem Chem Phys. 2019;21:12850–8.
Huy LT, Tam LT, Van Son T, Cuong ND, Nam MH, Vinh LK, et al. Photochemical ornament of silver nanocrystals on magnetic MnFe2O4 nanoparticles and their purposes in antibacterial brokers and SERS-based detection. J Electron Mater. 2017;46:3412–21.
Yang X, He Y, Wang X, Yuan R. A SERS biosensor with magnetic substrate CoFe2O4@Ag for delicate detection of Hg2+. Appl Surf Sci. 2017;416:581–6.
Ding Q, Ma Y, Ye Y, Yang L, Liu J. A easy technique to organize the magnetic Ni@Au core-shell nanostructure for the cycle surface-enhanced Raman scattering substrates. J Raman Spectrosc. 2013;44:987–93.
Xu X, Li H, Hasan D, Ruoff RS, Wang AX, Fan DL. Close to-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater. 2013;23:4332–8.
Hardiansyah A, Chen A-Y, Liao H-L, Yang M-C, Liu T-Y, Chan T-Y, et al. Core-shell of FePt@SiO2-Au magnetic nanoparticles for speedy SERS detection. Nanoscale Res Lett. 2015;10:412.
Wang Y, Liu Q, Solar Y, Wang R. Magnetic subject modulated SERS enhancement of CoPt hole nanoparticles with sizes beneath 10 nm. Nanoscale. 2018;10:12650–6.
Choi JY, Kim Okay, Shin KS. Floor-enhanced Raman scattering is inducible by recyclable Ag-coated magnetic particles. Vib Spectrosc. 2010;53:117–20.
Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, et al. Popcorn-shaped magnetic core–plasmonic shell multifunctional nanoparticles for the focused magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant micro organism. Chem Eur J. 2013;19:2839–47.
Wang C, Li P, Wang J, Rong Z, Pang Y, Xu J, et al. Polyethylenimine-interlayered core-shell–satellite tv for pc 3D magnetic microspheres as versatile SERS substrates. Nanoscale. 2015;7:18694–707.
Han B, Choi N, Kim KH, Lim DW, Choo J. Software of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Phys Chem C. 2011;115:6290–6.
Wang C, Wang J, Li P, Rong Z, Jia X, Ma Q, et al. Sonochemical synthesis of extremely branched flower-like Fe3O4@SiO2@Ag microcomposites and their utility as versatile SERS substrates. Nanoscale. 2016;8:19816–28.
Yang T, Guo X, Wu Y, Wang H, Fu S, Wen Y, et al. Facile and label-free detection of lung most cancers biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interfaces. 2014;6:20985–93.
Zhang J, Gim S, Paris G, Dallabernardina P, Schmitt CNZ, Eickelmann S, et al. Ultrasonic-assisted synthesis of extremely outlined silver nanodimers by self-assembly for improved surface-enhanced Raman spectroscopy. Chem Eur J. 2020;26:1243–8.
Purbia R, Nayak PD, Paria S. Seen light-induced Ag nanoparticle deposited urchin-like buildings for enhanced SERS utility. Nanoscale. 2018;10:12970–4.
Han XX, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: energetic nanomaterials and purposes. Nanoscale. 2017;9:4847–61.
Keshavarz M, Tan B, Venkatakrishnan Okay. Label-free SERS quantum semiconductor probe for molecular-level and in vitro mobile detection: A noble-metal-free methodology. ACS Appl Mater Interface. 2018;10:34886–904.
Kang T, Guan R, Chen X, Tune Y, Jiang H, Zhao J. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett. 2013;8:496.
Han XX, Köhler C, Kozuch J, Kuhlmann U, Paasche L, Sivanesan A, et al. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: A case examine on cytochrome b5. Small. 2013;9:4175–81.
Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, et al. Fast and delicate phenotypic marker detection on breast most cancers cells utilizing surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron. 2014;51:238–43.
Yang L, Peng Y, Yang Y, Liu J, Li Z, Ma Y, et al. Inexperienced and delicate versatile semiconductor SERS substrates: Hydrogenated black TiO2 nanowires. ACS Appl Nano Mater. 2018;1:4516–27.
Wu H, Wang H, Li G. Metallic oxide semiconductor SERS-active substrates by defect engineering. Analyst. 2017;142:326–35.
Chen M, Li Okay, Luo Y, Shi J, Weng C, Gao L, et al. Improved SERS exercise of non-stoichiometric copper sulfide nanostructures associated to charge-transfer resonance. Phys Chem Chem Phys. 2020;22:5145–53.
Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun. 2017;8:1993.
Cheng YF, Cao Q, Zhang J, Wu T, Che R. Environment friendly photodegradation of dye pollution utilizing a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. Appl Catal B: Environ. 2017;217:37–47.
Prasad MD, Krishna MG, Batabyal SK. Side-engineered surfaces of two-dimensional layered BiOI and Au–BiOI substrates for tuning the surface-enhanced Raman scattering and visual gentle photodetector response. ACS Appl Nano Mater. 2019;2:3906–15.
Wang X, Shi W, She G, Mu L. Utilizing Si and Ge nanostructures as substrates for surface-enhanced Raman scattering primarily based on the photoinduced cost switch mechanism. J Am Chem Soc. 2011;133:16518–23.
Cui H, Li S, Deng S, Chen H, Wang C. Versatile, clear, and free-standing silicon nanowire SERS platform for in situ meals inspection. ACS Sens. 2017;2:386–93.
Haldavnekar R, Venkatakrishnan Okay, Tan B. Non-plasmonic semiconductor quantum SERS probe as a pathway for in vitro most cancers detection. Nat Commun. 2018;9:3065.
Keshavarz M, Kassanos P, Tan B, Venkatakrishnan Okay. Metallic-oxide surface-enhanced Raman biosensor template in the direction of point-of-care EGFR detection and most cancers diagnostics. Nanoscale Horiz. 2020;5:294–307.
Yilmaz M, Babur E, Ozdemir M, Gieseking RL, Dede Y, Tamer U, et al. Nanostructured natural semiconductor movies for molecular detection with surface-enhanced Raman spectroscopy. Nat Mater. 2017;16:918–24.
Demirel G, Gieseking RLM, Ozdemir R, Kahmann S, Loi MA, Schatz GC, et al. Molecular engineering of natural semiconductors allow noble metal-comparable SERS enhancement and sensitivity. Nat Commun. 2019;10:5502.
Ganesh S, Venkatakrishnan Okay, Tan B. Quantum scale natural semiconductors for SERS detection of DNA methylation and gene expression. Nat Commun. 2020;11:1135.
Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol Adv. 2017;35:168–77.
Kho KW, Fu CY, Dinish US, Olivo M. Medical SERS: are we there but? J Biophotonics. 2011;4:667–84.
Liu X, Knauer M, Ivleva NP, Niessner R, Haisch C. Synthesis of core−shell surface-enhanced Raman tags for bioimaging. Anal Chem. 2010;82:441–6.
Yu Q, Wang Y, Mei R, Yin Y, You J, Chen L. Polystyrene encapsulated SERS tags as promising customary instruments: Easy and common in synthesis; extremely delicate and ultrastable for bioimaging. Anal Chem. 2019;91:5270–7.
Zhang L, Zhang R, Gao M, Zhang X. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its utilization within the meeting of polydopamine protected bioorthogonal SERS tag for dwell cell imaging. Talanta. 2016;158:315–21.
Wen S, Miao X, Fan G-C, Xu T, Jiang LP, Wu P, et al. Aptamer-conjugated Au nanocage/SiO2 core-shell bifunctional nanoprobes with excessive stability and biocompatibility for mobile SERS imaging and near-infrared photothermal remedy. ACS Sens. 2019;4:301–8.
Jaworska A, Wojcik T, Malek Okay, Kwolek U, Kepczynski M, Ansary AA, et al. Rhodamine 6G conjugated to gold nanoparticles as labels for each SERS and fluorescence research on dwell endothelial cells. Microchim Acta. 2015;182:119–27.
Neng J, Harpster MH, Zhang H, Mecham JO, Wilson WC, Johnson PA. A flexible SERS-based immunoassay for immunoglobulin detection utilizing antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens Bioelectron. 2010;26:1009–15.
Tune D, Yang R, Fang S, Liu Y, Lengthy F, Zhu A. SERS primarily based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with a number of sign enhancement. Microchim Acta. 2018;185:491.
Simon T, Potara M, Gabudean AM, Licarete E, Banciu M, Astilean S. Designing theranostic brokers primarily based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic remedy. ACS Appl Mater Interfaces. 2015;7:16191–201.
Luo Z, Chen Okay, Lu D, Han H, Zou M. Synthesis of p-amino thiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing purposes. Microchim Acta. 2011;173:149–56.
Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, Wang S, Liu G, Yan X, Zhong Q, Ren B. Dependable quantitative SERS evaluation facilitated by core-shell nanoparticles with embedded inner requirements. Angew Chem Int Ed. 2015;54:7308–12.
Loren A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, Abrahamsson Okay. Inner customary in surface-enhanced Raman spectroscopy. Anal Chem. 2004;76:7391–5.
Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality. ACS Appl Mater Interfaces. 2020;12:2059–66.
Zou Y, Chen L, Tune Z, Ding D, Chen Y, Xu Y, et al. Secure and distinctive graphitic Raman inner customary nanocapsules for surface-enhanced Raman spectroscopy quantitative evaluation. Nano Res. 2016;9:1418–25.
Zhang J, Zhang X, Chen S, Gong T, Zhu Y. Floor-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon. 2016;100:395–407.
Justino CIL, Freitas AC, Pereira R, Cuarte AC, Rocha-Santos TAP. Current developments in recognition components for chemical sensors and biosensors. Traits Anal Chem. 2015;68:2–17.
Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, et al. Facile synthesis of Au-coated magnetic nanoparticles and their utility in micro organism detection by way of a SERS technique. ACS Appl Mater Interfaces. 2016;8:19958–67.
Pang Y, Wang C, Xiao R, Solar Z. Twin-selective and dual-enhanced SERS nanoprobes technique for circulating hepatocellular carcinoma cells detection. Chem Eur J. 2018;24:7060–7.
Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, et al. Delicate and particular detection of medical micro organism by way of vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B. 2018;6:3751–61.
Zou Y, Huang S, Liao Y, Zhu X, Chen Y, Chen L, et al. Isotopic graphene–isolated-Au-nanocrystals with mobile Raman-silent alerts for most cancers cell sample recognition. Chem Sci. 2018;9:2842–9.
Yin D, Wang S, He Y, Liu J, Zhou M, Ouyang J, et al. Floor-enhanced Raman scattering imaging of most cancers cells and tissues by way of sialic acid-imprinted nanotags. Chem Commun. 2015;51:17696–9.
Pang Y, Wan N, Shi L, Wang C, Solar Z, Xiao R, et al. Twin-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic micro organism detection through the use of vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal Chim Acta. 2019;1077:288–96.
Tang R, Hu R, Jiang X, Lu F. LHRH-targeting surface-enhanced Raman scattering tags for the speedy detection of circulating tumor cells. Sens Actuat B Chem. 2019;284:468–74.
Zhang Q, Li J, Tang P, Lu X, Tian J, Zhong L. Dynamic imaging of transferrin receptor molecules on single dwell cell with bridge gaps-enhanced Raman tags. Nanomaterials. 2019;9:1373.
Wen H, Jiang P, Hu Y, Li G. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Microchim Acta. 2018;185:353.
Beqa L, Fan Z, Singh AK, Senapati D, Ray PC. Gold nano-popcorn connected SWCNT hybrid nanomaterial for focused prognosis and photothermal remedy of human breast most cancers cells. ACS Appl Mater Interfaces. 2011;3:3316–24.
Wang X, Wang C, Cheng L, Lee ST, Liu Z. Noble steel coated single-walled carbon nanotubes for purposes in floor enhanced Raman scattering imaging and photothermal remedy. J Am Chem Soc. 2012;134:7414–22.
Kim S, Kim TG, Lee SH, Kim W, Bang A, Moon SW, et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast most cancers detection utilizing human tears. ACS Appl Mater Interfaces. 2020;12:7897–904.
Zhu Okay, Wang Z, Zong S, Liu Y, Yang Okay, Li N, et al. Hydrophobic plasmonic nanoacorn array for a label-free and uniform SERS-based biomolecular assay. ACS Appl Mater Interfaces. 2020;12:29917–27.
Bai XR, Wang LH, Ren JQ, Bai XW, Zeng LW, Shen AG, et al. Correct medical prognosis of liver most cancers primarily based on simultaneous detection of ternary particular antigens by magnetic induced mixing surface-enhanced Raman scattering emissions. Anal Chem. 2019;91:2955–63.
Lin D, Wu Q, Qiu S, Chen G, Feng S, Chen R, et al. Label-free liquid biopsy primarily based on blood circulating DNA detection utilizing SERS-based nanotechnology for nasopharyngeal most cancers screening. Nanomed Nanotechnol. 2019;22: 102100.
Leong SX, Leong YX, Tan EX, Sim HYF, Koh CSL, Lee YH, et al. Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of coronavirus illness 2019 (COVID-19) underneath 5 min. ACS Nano. 2022;16:2629–39.
Plou J, Valera P-S, Garcia I, Albuquerque CDL, Carracedo A, Marzan LML. Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring towards precision medication. ACS Photonics. 2022;9:333–50.
Lussier F, Thibault V, Charron B, Wallace GQ, Masson JF. Deep studying and synthetic intelligence strategies for Raman and surface-enhanced Raman scattering. Development Anal Chem. 2020;124: 115796.
Tang JW, Liu QH, Yin XC, Pan YC, Wen PB, Liu X, et al. Comparative evaluation of machine studying algorithms on surface-enhanced Raman spectra of medical Staphylococcus species. Entrance Microbiol. 2021;12: 696921.
Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, et al. On-site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.
Shin H, Oh S, Hong S, Kang M, Kang D, Ji Y-G, et al. Early-stage lung most cancers prognosis by deep learning-based spectroscopic evaluation of circulating exosomes. ACS Nano. 2020;14:5435–44.
Lin X, Lin D, Chen Y, Lin J, Weng S, Tune J, Feng S. Excessive throughput blood evaluation primarily based on deep studying algorithm and self-positioning super-hydrophobic SERS platform for non-invasive multi-disease screening. Adv Perform Mater. 2021;31:2103382.
Uzayisenga V, Lin XD, Li LM, Anema JR, Yang ZL, Huang YF, et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir. 2012;28:9140–6.
Yang JL, Li RP, Han JH, Huang MJ. FDTD simulation examine of measurement/hole and substrate-dependent SERS exercise examine of Au@SiO2 nanoparticles. Chin Phys B. 2016;25: 083301.
Tira C, Tira D, Simon T, Astilean S. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with particular floor plasmon resonance. J Mol Struct. 2014;1072:137–43.
Li M, Wang JY, Chen QQ, Lin LH, Radjenovic P, Zhang H, et al. Background-free quantitative floor enhanced Raman spectroscopy evaluation utilizing core-shell nanoparticles with an inherent inner customary. Anal Chem. 2019;91:15025–31.
Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, et al. Dependable quantitative SERS evaluation facilitated by core-shell nanoparticles with embedded inner requirements. Angew Chem Int Ed. 2015;54:7308–12.
Rho E, Kim M, Cho SH, Choi B, Park H, Jang H, et al. Separation-free bacterial identification in arbitrary media by way of deep neural network-based SERS evaluation. Biosens Bioelectron. 2022;202: 113991.
Thrift WJ, Ronaghi S, Samad M, Wei H, Nguyen DG, Cabuslay AS, et al. Deep studying evaluation of vibrational spectra of bacterial lysate for speedy antimicrobial susceptibility testing. ACS Nano. 2020;14:15336–48.
Liu H, Gao X, Xu C, Liu D. SERS tags for biomedical detection and bioimaging. Theranostics. 2022;12:1870–903.
Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor concentrating on and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.
Israelsen ND, Hanson C, Vargis E. Nanoparticle properties and synthesis results on surface-enhanced Raman scattering enhancement issue: An introduction. Sci World J. 2015;2015: 124582.
Martín C, Kostarelos Okay, Prato M, Bianco A. Biocompatibility and biodegradability of 2D supplies: graphene and past. Chem Commun. 2019;55:5540–6.
Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Dimension-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.
Ishigaki M, Maeda Y, Taketani A, Andriana BB, Ishihara R, Wongravee Okay, et al. Analysis of early-stage esophageal most cancers by Raman spectroscopy and chemometric strategies. Analyst. 2016;141:1027–33.
Yeh Y-T, Gulino Okay, Zhang Y, Sabestien A, Chou T-W, Zhou B, et al. A speedy and label-free platform for virus seize and identification from medical samples. P Natl Acad Sci. 2020;117:895.
Moldovan R, Vereshchagina E, Milenko Okay, Iacob BC, Bodoki AE, Falamas A, et al. Overview on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical purposes. Anal Chim Acta. 2022;1209: 339250.
Wang Y, Zhao C, Wang J, Luo X, Xie L, Zhan S, et al. Wearable plasmonic-metasurface sensor for noninvasive and common molecular fingerprint detection on biointerfaces. Sci Adv. 2021;7:eabe4553.
Koh EH, Lee WC, Choi YJ, Moon JI, Jang J, Park SG, et al. A Wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl Mater Interfaces. 2021;13:3024–32.
Wang Y, Zhou C, Wang W, Xu D, Zeng F, Zhan C, et al. Photocatalytically powered matchlike nanomotor for light-guided energetic SERS sensing. Angew Chem Int Ed. 2018;57:13110–3.
Fan X, Hao Q, Li M, Zhang X, Yang X, Mei Y, et al. Hotspots on the transfer: Energetic molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl Mater Interfaces. 2020;12:28783–91.