Simonyan, Ok. & Zisserman, A. Very deep convolutional networks for large-scale picture recognition. In third Worldwide Convention on Studying Representations 1–14 (ICLR, 2015).
Wang, G. et al. Interactive medical picture segmentation utilizing deep studying with image-specific effective tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018).
Furui, S., Deng, L., Gales, M., Ney, H. & Tokuda, Ok. Basic applied sciences in fashionable speech recognition. IEEE Sign Course of Magazine. 29, 16–17 (2012).
Sak, H., Senior, A., Rao, Ok. & Beaufays, F. Quick and correct recurrent neural community acoustic fashions for speech recognition. In Proc. Annual Convention of the Worldwide Speech Communication Affiliation, INTERSPEECH 1468–1472 (ISCA, 2015).
He, Ok., Zhang, X., Ren, S. & Solar, J. Deep residual studying for picture recognition. In Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 770–778 (IEEE, 2016).
Lecun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).
Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).
Liu, L. et al. Computing methods for autonomous driving: cutting-edge and challenges. IEEE Web Issues J. 8, 6469–6486 (2021).
Shi, W. et al. LOEN: lensless opto-electronic neural community empowered machine imaginative and prescient. Mild Sci. Appl. 11, 121 (2022).
Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Giant-scale optical neural networks based mostly on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).
Wetzstein, G. et al. Inference in synthetic intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Xue, W. & Miller, O. D. Excessive-NA optical edge detection by way of optimized multilayer movies. J. Optics 23, 125004 (2021).
Wang, T. et al. An optical neural community utilizing lower than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).
Wang, T. et al. Picture sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 8–17 (2023).
Badloe, T., Lee, S. & Rho, J. Computation on the pace of sunshine: metamaterials for all-optical calculations and neural networks. Adv. Photon. 4, 064002 (2022).
Vanderlugt, A. Optical Sign Processing (Wiley, 1993).
Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for picture classification. Sci. Rep. 8, 12324 (2018).
Colburn, S., Chu, Y., Shilzerman, E. & Majumdar, A. Optical frontend for a convolutional neural community. Appl. Decide. 58, 3179 (2019).
Zhou, T. et al. Giant-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Chen, Y. H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Stable-State Circuits 52, 127–138 (2017).
Neshatpour, Ok., Homayoun, H. & Sasan, A. ICNN: the iterative convolutional neural community. In ACM Transactions on Embedded Computing Techniques 18, 119 (ACM, 2019).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).
Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural community. Nat. Commun. 12, 96 (2021).
Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 457 (2021).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural community for picture classification. Nature 606, 501–506 (2022).
Fu, T. et al. Photonic machine studying with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).
Lin, X. et al. All-optical machine studying utilizing diffractive deep neural networks. Science 361, 1004–1008 (2018).
Qian, C. et al. Performing optical logic operations by a diffractive neural community. Mild Sci. Appl. 9, 59 (2020).
Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks within the seen. Mild Sci. Appl. 11, 158 (2022).
Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. S. & Faraon, A. Single-shot quantitative section gradient microscopy utilizing a system of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).
Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).
Khorasaninejad, M. et al. Metalenses at seen wavelengths: diffraction-limited focusing and subwavelength decision imaging. Science 352, 1190–1194 (2016).
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics within the seen. Nat. Mater. 22, 474–481 (2023).
Levanon, N. et al. Angular transmission response of in-plane symmetry-breaking quasi-BIC all-dielectric metasurfaces. ACS Photonics 9, 3642–3648 (2022).
Nolen, J. R., Overvig, A. C., Cotrufo, M. & Alù, A. Arbitrarily polarized and unidirectional emission from thermal metasurfaces. Preprint at https://arxiv.org/abs/2301.12301 (2023).
Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for picture differentiation. Optica 5, 251–256 (2018).
Cordaro, A. et al. Excessive-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).
Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for picture differentiation. Nat. Photon. 14, 316–323 (2020).
Fu, W. et al. Ultracompact meta-imagers for arbitrary all-optical convolution. Mild Sci. Appl. 11, 62 (2022).
Wang, H., Guo, C., Zhao, Z. & Fan, S. Compact incoherent picture differentiation with nanophotonic constructions. ACS Photonics 7, 338–343 (2020).
Zhang, X., Bai, B., Solar, H. B., Jin, G. & Valentine, J. Incoherent optoelectronic differentiation based mostly on optimized multilayer movies. Laser Photon Rev. 16, 2200038 (2022).
Zheng, H. et al. Meta-optic accelerators for object classifiers. Sci. Adv. 8, eabo6410 (2022).
Bernstein, L. et al. Single-shot optical neural community. Sci. Adv. 9, eadg7904 (2023).
Shen, Z. et al. Monocular metasurface digital camera for passive single-shot 4D imaging. Nat. Commun. 14, 1035 (2023).
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based studying utilized to doc recognition. Proc. IEEE 86, 2278–2323 (1998).
Zheng, H. et al. Compound meta-optics for full and loss-less area management. ACS Nano 16, 15100–15107 (2022).
Liu, S. et al. Extra ConvNets within the 2020s: scaling up kernels past 51×51 utilizing sparsity. In eleventh Worldwide Convention on Studying Representations 1–23 (ICLR, 2023).
Barron, J. T. A common and adaptive sturdy loss perform. In Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 4326–4334 (IEEE, 2019).
Dosovitskiy, A. et al. A picture is price 16×16 phrases: transformers for picture recognition at scale. In ninth Worldwide Convention on Studying Representations 1–22 (ICLR, 2021).
Stillmaker, A. & Baas, B. Scaling equations for the correct prediction of CMOS gadget efficiency from 180 nm to 7 nm. Integration 58, 74–81 (2017).
McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 6, eabc7646 (2020).
Ding, X., Zhang, X., Han, J. & Ding, G. Scaling up your kernels to 31 × 31: revisiting giant kernel design in CNNs. In Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 11953–11965 (IEEE, 2022).
Ding, X. et al. RepVgg: making VGG-style ConvNets nice once more. In Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 13728–13737 (IEEE, 2021).
Li, L. et al. Clever metasurface imager and recognizer. Mild Sci. Appl. 8, 97 (2019).
Zhao, R. et al. Multichannel vectorial holographic show and encryption. Mild Sci. Appl. 7, 95 (2018).
Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic colour prints for photonic safety platform. Nat. Commun. 12, 3614 (2021).
Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum supply. Science 368, 1487–1490 (2020).
Hugonin, A. J. P. & Lalanne, P. RETICOLO software program for grating evaluation. Preprint at https://arxiv.org/abs/2101.00901 (2023).