Thursday, October 12, 2023
HomeNanotechnologyMucus interplay to enhance gastrointestinal retention and pharmacokinetics of orally administered nano-drug...

Mucus interplay to enhance gastrointestinal retention and pharmacokinetics of orally administered nano-drug supply methods | Journal of Nanobiotechnology


  • Polonsky WH, Henry RR. Poor remedy adherence in sort 2 diabetes: recognizing the scope of the issue and its key contributors. Affected person Choose Adherence. 2016;10:1299–307.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loretz B, et al. Oral gene supply: methods to enhance stability of pDNA in the direction of intestinal digestion. J Drug Goal. 2006;14(5):311–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lehr C-M, et al. An estimate of turnover time of intestinal mucus gel layer within the rat in situ loop. Int J Pharm. 1991;70(3):235–40.

    CAS 
    Article 

    Google Scholar
     

  • Gardner ML. Gastrointestinal absorption of intact proteins. Annu Rev Nutr. 1988;8:329–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corfield AP, et al. Mucins within the gastrointestinal tract in well being and illness. Entrance Biosci. 2001;6:D1321–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fallingborg J, et al. pH-profile and regional transit occasions of the traditional intestine measured by a radiotelemetry gadget. Aliment Pharmacol Ther. 1989;3(6):605–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perry SL, McClements DJ. Current advances in encapsulation, safety, and oral supply of bioactive proteins and peptides utilizing colloidal methods. Molecules. 2020;25(5):1161.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Caffarel-Salvador E, et al. Oral supply of biologics utilizing drug-device combos. Curr Opin Pharmacol. 2017;36:8–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marasini N, Skwarczynski M, Toth I. Oral supply of nanoparticle-based vaccines. Skilled Rev Vaccines. 2014;13(11):1361–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshida M, et al. Complexation hydrogels as potential carriers in oral vaccine supply methods. Eur J Pharm Biopharm. 2017;112:138–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • des Rieux A, et al. Nanoparticles as potential oral supply methods of proteins and vaccines: a mechanistic strategy. J Management Launch. 2006;116(1):1–27.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • McClements DJ. Encapsulation, safety, and supply of bioactive proteins and peptides utilizing nanoparticle and microparticle methods: a overview. Adv Colloid Interface Sci. 2018;253:1–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gabor F, et al. The lectin-cell interplay and its implications to intestinal lectin-mediated drug supply. Adv Drug Deliv Rev. 2004;56(4):459–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ibrahim YHY, et al. Overview of just lately used strategies and supplies to enhance the effectivity of orally administered proteins/peptides. Daru. 2019;28:403–16.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Musika J, Chudapongse N. Growth of lipid-based nanocarriers for rising gastrointestinal absorption of Lupinifolin. Planta Med. 2020;86(5):364–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dumont C, et al. In-vitro analysis of stable lipid nanoparticles: capacity to encapsulate, launch and guarantee efficient safety of peptides within the gastrointestinal tract. Int J Pharm. 2019;565:409–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kurd M, et al. Oral supply of indinavir utilizing mPEG-PCL nanoparticles: preparation, optimization, mobile uptake, transport and pharmacokinetic analysis. Artif Cells Nanomed Biotechnol. 2019;47(1):2123–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bransil R, Turner BS. Mucin construction, aggregation, physiological features and biomedical purposes. Curr Opin Colloid Interface Sci. 2006;11(2–3):164–70.

    Article 
    CAS 

    Google Scholar
     

  • Offner GD, et al. The amino-terminal sequence of MUC5B comprises conserved multifunctional D domains: implications for tissue-specific mucin features. Biochem Biophys Res Commun. 1998;251(1):350–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Bolos C, Actual FX, Lopez-Ferrer A. Regulation of mucin and glycoconjugate expression: from regular epithelium to gastric tumors. Entrance Biosci. 2001;6:d1256–63.

    PubMed 

    Google Scholar
     

  • Schneider H, et al. Research of mucin turnover within the small gut by in vivo labeling. Sci Rep. 2018;8(1):1–11.


    Google Scholar
     

  • Johansson MEV, et al. The interior of the 2 Muc2 mucin-dependent mucus layers in colon is devoid of micro organism. Proc Natl Acad Sci. 2008;105(39):15064–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arul GS, et al. Mucin gene expression in Barrett’s oesophagus: an in situ hybridisation and immunohistochemical research. Intestine. 2000;47(6):753–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ho SB, et al. The adherent gastric mucous layer consists of alternating layers of MUC5AC and MUC6 mucin proteins. Dig Dis Sci. 2004;49(10):1598–606.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gustafsson JK, et al. An ex vivo technique for learning mucus formation, properties, and thickness in human colonic biopsies and mouse small and huge intestinal explants. Am J Physiol Gastrointest Liver Physiol. 2012;302(4):G430–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in well being and illness. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26(6):547–53.

    PubMed 
    Article 

    Google Scholar
     

  • Vaishnava S, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host within the gut. Science. 2011;334(6053):255–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chu H, et al. Human α-defensin 6 promotes mucosal innate immunity via self-assembled peptide nanonets. Science. 2012;337(6093):477–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johansson MEV, Hansson GC. Protecting micro organism at a distance. Science. 2011;334(6053):182–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meaney C, O’Driscoll C. Mucus as a barrier to the permeability of hydrophilic and lipophilic compounds within the absence and presence of sodium taurocholate micellar methods utilizing cell tradition fashions. Eur J Pharm Sci. 1999;8(3):167–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dekker J, et al. The MUC household: an obituary. Traits Biochem Sci. 2002;27(3):126–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verdugo P. Goblet cells secretion and mucogenesis. Annu Rev Physiol. 1990;52(1):157–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shogren R, Gerken TA, Jentoft N. Function of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering research of ovine submaxillary mucin. Biochemistry. 1989;28(13):5525–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sheehan JK, Oates Okay, Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986;239(1):147–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herrmann A, et al. Research on the “insoluble” glycoprotein complicated from human colon Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999;274(22):15828–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Klinken BJ, et al. Mucin gene construction and expression: safety vs adhesion. Am J Physiol-Gastrointest Liver Physiol. 1995;269(5):G613–27.

    Article 

    Google Scholar
     

  • Neutra MR. Gastrointestinal mucus: synthesis, secretion, and performance. Physiol Gastrointest Tract. 1987:975–1009.

  • Moran AP, Gupta A, Joshi L. Candy-talk: function of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Intestine. 2011;60(10):1412–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yudin AI, Hanson FW, Katz DF. Human cervical mucus and its interplay with sperm: a fine-structural view. Biol Reprod. 1989;40(3):661–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olmsted SS, et al. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001;81(4):1930–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bajka BH, et al. The affect of small intestinal mucus construction on particle transport ex vivo. Colloids Surf B. 2015;135:73–80.

    CAS 
    Article 

    Google Scholar
     

  • Ensign LM, et al. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm. 2013;10(6):2176–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdulkarim M, et al. Nanoparticle diffusion inside intestinal mucus: three-dimensional response evaluation dissecting the impression of particle floor cost, measurement and heterogeneity throughout polyelectrolyte, pegylated and viral particles. Eur J Pharm Biopharm. 2015;97:230–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Celli J, et al. Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromol. 2005;6(3):1329–33.

    CAS 
    Article 

    Google Scholar
     

  • Georgiades P, et al. Particle monitoring microrheology of purified gastrointestinal mucins. Biopolymers. 2014;101(4):366–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yildiz HM, et al. Meals-associated stimuli improve barrier properties of gastrointestinal mucus. Biomaterials. 2015;54:1–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma A, et al. In vitro reconstitution of an intestinal mucus layer exhibits that cations and pH management the pore construction that regulates its permeability and barrier operate. ACS Appl Bio Mater. 2020;3(5):2897–909.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nhu NTQ, et al. Alkaline pH will increase swimming velocity and facilitates mucus penetration for Vibrio cholerae. J Bacteriol. 2021;203(7):e00607-20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yildiz HM, et al. Measurement selectivity of intestinal mucus to diffusing particulates depends on floor chemistry and publicity to lipids. J Drug Goal. 2015;23(7–8):768–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackie A, et al. Growing dietary oat fibre decreases the permeability of intestinal mucus. J Funct Meals. 2016;26:418–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maisel Okay, et al. Impact of floor chemistry on nanoparticle interplay with gastrointestinal mucus and distribution within the gastrointestinal tract following oral and rectal administration within the mouse. J Management Launch. 2015;197:48–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu R-J. Growth of the new child GI tract and its relation to colostrum/milk consumption: a overview. Reprod Fertil Dev. 1996;8(1):35–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Farinati F, et al. Modifications in parietal and mucous cell mass within the gastric mucosa of regular topics with age: a morphometric research. Gerontology. 1993;39(3):146–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corfield AP, et al. Sialic acids in human gastric aspirates: detection of 9-O-lactyl- and 9-O-acetyl-N-acetylneuraminic acids and a lower in complete sialic acid focus with age. Clin Sci (Lond). 1993;84(5):573–9.

    CAS 
    Article 

    Google Scholar
     

  • Cryer B, et al. Impact of growing old on gastric and duodenal mucosal prostaglandin concentrations in people. Gastroenterology. 1992;102(4):1118–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larhed AW, et al. Diffusion of medication in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matthes I, et al. Mucus fashions for investigation of intestinal absorption mechanisms. 4. Comparability of mucus fashions with absorption fashions in vivo and in situ for prediction of intestinal drug absorption. Pharmazie. 1992;47(10):787–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Kas HS. Chitosan: properties, preparations and software to microparticulate methods. J Microencapsul. 1997;14(6):689–711.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Svensson O, Arnebrant T. Mucin layers and multilayers—physicochemical properties and purposes. Curr Opin Colloid Interface Sci. 2010;15(6):395–405.

    CAS 
    Article 

    Google Scholar
     

  • Rubinstein A, Tirosh B. Mucus gel thickness and turnover within the gastrointestinal tract of the rat: response to cholinergic stimulus and implication for mucoadhesion. Pharm Res. 1994;11(6):794–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Navabi N, et al. Helicobacter pylori an infection impairs the mucin manufacturing price and turnover within the murine gastric mucosa. Infect Immun. 2013;81(3):829–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johansson ME. Quick renewal of the distal colonic mucus layers by the floor goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS ONE. 2012;7(7):e41009.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pothuraju R, et al. Mechanistic and purposeful shades of mucins and related glycans in colon most cancers. Cancers (Basel). 2020;12(3):649.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clean M, et al. Expression of MUC2-mucin in colorectal adenomas and carcinomas of various histological sorts. Int J Most cancers. 1994;59(3):301–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van der Sluis M, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is essential for colonic safety. Gastroenterology. 2006;131(1):117–29.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Martens EC, et al. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a outstanding human intestine symbiont. J Biol Chem. 2009;284(27):18445–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hollingsworth MA, Swanson BJ. Mucins in most cancers: safety and management of the cell floor. Nat Rev Most cancers. 2004;4(1):45–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim YS, Ho SB. Intestinal goblet cells and mucins in well being and illness: latest insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Okudaira Okay, et al. MUC2 gene promoter methylation in mucinous and non-mucinous colorectal most cancers tissues. Int J Oncol. 2010;36(4):765–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal most cancers. Most cancers Metastasis Rev. 2004;23(1–2):77–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johansson ME, et al. Micro organism penetrate the interior mucus layer earlier than irritation within the dextran sulfate colitis mannequin. PLoS ONE. 2010;5(8):e12238.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sartor RB. Microbial influences in inflammatory bowel ailments. Gastroenterology. 2008;134(2):577–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heazlewood CK, et al. Aberrant mucin meeting in mice causes endoplasmic reticulum stress and spontaneous irritation resembling ulcerative colitis. PLoS Med. 2008;5(3):e54.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bergstrom Okay, et al. Core 1- and 3-derived O-glycans collectively preserve the colonic mucus barrier and defend in opposition to spontaneous colitis in mice. Mucosal Immunol. 2017;10(1):91–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roy RK, et al. CEACAM6 is upregulated by Helicobacter pylori CagA and is a biomarker for early gastric most cancers. Oncotarget. 2016;7(34):55290–301.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Locker GY, et al. ASCO 2006 replace of suggestions for using tumor markers in gastrointestinal most cancers. J Clin Oncol. 2006;24(33):5313–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Comelli EM, et al. Biomarkers of human gastrointestinal tract areas. Mamm Genome. 2009;20(8):516–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soendergaard C, et al. Alpha-1 antitrypsin and granulocyte colony-stimulating issue as serum biomarkers of illness severity in ulcerative colitis. Inflamm Bowel Dis. 2015;21(5):1077–88.

    PubMed 
    Article 

    Google Scholar
     

  • Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel illness. Infect Immun. 2000;68(12):7010–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Serada S, et al. Serum leucine-rich alpha-2 glycoprotein is a illness exercise biomarker in ulcerative colitis. Inflamm Bowel Dis. 2012;18(11):2169–79.

    PubMed 
    Article 

    Google Scholar
     

  • Juge N. Microbial adhesins to gastrointestinal mucus. Traits Microbiol. 2012;20(1):30–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boekhorst J, et al. Comparative evaluation of proteins with a mucus-binding area discovered solely in lactic acid micro organism. Microbiology. 2006;152(Pt 1):273–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miyoshi Y, et al. A mucus adhesion selling protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem. 2006;70(7):1622–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe M, et al. An adhesin-like protein, Lam29, from Lactobacillus mucosae ME-340 binds to histone H3 and blood group antigens in human colonic mucus. Biosci Biotechnol Biochem. 2012;76(9):1655–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Vitamins. 2011;3(5):613–36.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Banla LI, et al. Sortase-dependent proteins promote gastrointestinal colonization by Enterococci. Infect Immun. 2019;87(5):e00853-18.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Erdem AL, et al. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol. 2007;189(20):7426–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanchez B, et al. A flagellin-producing Lactococcus pressure: interactions with mucin and enteropathogens. FEMS Microbiol Lett. 2011;318(2):101–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tasteyre A, et al. Function of FliC and FliD flagellar proteins of Clostridium difficile in adherence and intestine colonization. Infect Immun. 2001;69(12):7937–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tu QV, McGuckin MA, Mendz GL. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol. 2008;57(Pt 7):795–802.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin LZ, et al. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli K88ac fimbrial adhesin. FEMS Immunol Med Microbiol. 2000;27(1):17–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chessa D, et al. RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium. Mol Microbiol. 2008;68(3):573–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kankainen M, et al. Comparative genomic evaluation of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA. 2009;106(40):17193–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • von Ossowski I, et al. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol. 2010;76(7):2049–57.

    Article 
    CAS 

    Google Scholar
     

  • Geerlings SY, et al. Akkermansia muciniphila within the human gastrointestinal tract: when, the place, and the way? Microorganisms. 2018;6(3):75.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances health and transmission of a saccharolytic human intestine bacterial symbiont. Cell Host Microbe. 2008;4(5):447–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Praharaj AB, et al. Molecular dynamics insights into the construction, operate, and substrate binding mechanism of mucin desulfating sulfatase of intestine microbe Bacteroides fragilis. J Cell Biochem. 2018;119(4):3618–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lidell ME, et al. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal area and dissolve the protecting colonic mucus gel. Proc Natl Acad Sci USA. 2006;103(24):9298–303.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akiyama Y, Nagahara N. Novel formulation approaches to oral mucoadhesive drug supply methods. Medication Pharm Sci. 1999;98:477–505.

    CAS 
    Article 

    Google Scholar
     

  • Dhaliwal S, et al. Mucoadhesive microspheres for gastroretentive supply of acyclovir: in vitro and in vivo analysis. AAPS J. 2008;10(2):322–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han HK, Shin HJ, Ha DH. Improved oral bioavailability of alendronate through the mucoadhesive liposomal supply system. Eur J Pharm Sci. 2012;46(5):500–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manconi M, et al. Bettering oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech. 2013;14(2):485–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shin BS, et al. Enhanced absorption and tissue distribution of paclitaxel following oral administration of DHP 107, a novel mucoadhesive lipid dosage type. Most cancers Chemother Pharmacol. 2009;64(1):87–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao QR, et al. Enhanced oral bioavailability of novel mucoadhesive pellets containing valsartan ready by a dry powder-coating approach. Int J Pharm. 2012;434(1–2):325–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sensible JD. The fundamentals and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Durrer C, et al. Mucoadhesion of latexes. II. Adsorption isotherms and desorption research. Pharm Res. 1994;11(5):680–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sensible JD. The function of water motion and polymer hydration in mucoadhesion. Medication Pharm Sci. 1999;98:11–23.

    CAS 
    Article 

    Google Scholar
     

  • Mortazavi SA, Sensible JD. An investigation into the function of water motion and mucus gel dehydration in mucoadhesion. J Management Launch. 1993;25(3):197–203.

    CAS 
    Article 

    Google Scholar
     

  • Silberberg-Bouhnik M, et al. Osmotic deswelling of weakly charged poly (acrylic acid) options and gels. J Polym Sci, Half B: Polym Phys. 1995;33(16):2269–79.

    CAS 
    Article 

    Google Scholar
     

  • Voyutskii SS. Autohesion and adhesion of excessive polymers. New York: Interscience; 1963.


    Google Scholar
     

  • Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive supplies: a overview. Biomaterials. 1996;17(16):1553–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mikos A, Peppas N. Scaling ideas and molecular theories of adhesion of artificial polymers to glycoproteinic networks. In: Bioadhesive drug supply methods. Boca Raton, FL: CRC Press; 1990. p. 25–42.


    Google Scholar
     

  • Peppas N, Mikos A. Kinetics of mucus-polymer interactions. Paperback APV. 1990;25:65–85.


    Google Scholar
     

  • Peppas NA. Molecular calculations of poly(ethylene glycol) transport throughout a swollen poly (acrylic acid)/mucin interface. J Biomater Sci Polym Ed. 1998;9(6):535–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahlin JJ, Peppas NA. An investigation of polymer diffusion in hydrogel laminates utilizing near-field FTIR microscopy. Macromolecules. 1996;29(22):7124–9.

    CAS 
    Article 

    Google Scholar
     

  • Peppas NA, Thomas JB, McGinty J. Molecular features of mucoadhesive service improvement for drug supply and improved absorption. J Biomater Sci Polym Ed. 2009;20(1):1–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edmans JG, et al. Mucoadhesive electrospun fibre-based applied sciences for oral drugs. Pharmaceutics. 2020;12(6):504.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Derjaguin BV, et al. On the connection between the electrostatic and the molecular element of the adhesion of elastic particles to a stable floor. J Colloid Interface Sci. 1977;58(3):528–33.

    Article 

    Google Scholar
     

  • Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromol. 2008;9(7):1837–42.

    CAS 
    Article 

    Google Scholar
     

  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Construction, properties and purposes. Mar Medication. 2015;13(3):1133–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bravo-Osuna I, et al. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28(13):2233–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alishahi A, et al. Shelf life and supply enhancement of vitamin C utilizing chitosan nanoparticles. Meals Chem. 2011;126(3):935–40.

    CAS 
    Article 

    Google Scholar
     

  • Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral supply of amphotericin B. Pharm Dev Technol. 2019;24(4):504–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Imperiale JC, et al. Oral pharmacokinetics of a chitosan-based nano- drug supply system of interferon alpha. Polymers (Basel). 2019;11(11):1862.

    CAS 
    Article 

    Google Scholar
     

  • Murthy A, et al. Self-assembled lecithin-chitosan nanoparticles enhance the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm. 2020;588:119731.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, et al. Oral supply of metformin by chitosan nanoparticles for polycystic kidney illness. J Management Launch. 2020;329:1198–209.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rosso A, et al. Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Management Launch. 2021;333:579–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shin GH, Kim JT. Comparative research of chitosan and oligochitosan coatings on mucoadhesion of curcumin nanosuspensions. Pharmaceutics. 2021;13(12):2154.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng H, et al. Mucoadhesive versus mucopenetrating nanoparticles for oral supply of insulin. Acta Biomater. 2021;135:506–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abd El Hady WE, et al. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a possible gastroretentive supply system of nizatidine for augmented gastroprotective exercise. Drug Deliv. 2021;28(1):1795–809.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar A, Vimal A. Why Chitosan? From properties to perspective of mucosal drug supply. Int J Biol Macromol. 2016;91:615–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal supply of protein medication: alginate and chitosan—a overview. J Management Launch. 2006;114(1):1–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sandri G, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: affect of quaternization diploma on absorption of a excessive molecular weight molecule. Int J Pharm. 2005;297(1–2):146–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramalingam P, Ko YT. Improved oral supply of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified stable lipid nanoparticles. Colloids Surf B Biointerfaces. 2016;139:52–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leitner VM, Walker GF, Bernkop-Schnurch A. Thiolated polymers: proof for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro analysis of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomedicine. 2009;5(2):208–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunnhaupt S, et al. Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. Int J Pharm. 2011;408(1–2):191–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Millotti G, et al. In vivo analysis of thiolated chitosan tablets for oral insulin supply. J Pharm Sci. 2014;103(10):3165–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maria S, et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral supply of octreotide. J Drug Deliv Sci Technol. 2020;58:101807.

    CAS 
    Article 

    Google Scholar
     

  • Singla AK, Chawla M, Singh A. Potential purposes of carbomer in oral mucoadhesive managed drug supply system: a overview. Drug Dev Ind Pharm. 2000;26(9):913–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown HP. Carboxylic polymers. In: U.S.P. Workplace, editor. 1957; United States.

  • Yang X, et al. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle monitoring. PLoS ONE. 2012;7(12):e51054.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sensible JD, Kellaway IW, Worthington HE. An in-vitro investigation of mucosa-adhesive supplies to be used in managed drug supply. J Pharm Pharmacol. 1984;36(5):295–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bottenberg P, et al. Growth and testing of bioadhesive, fluoride-containing slow-release tablets for oral use. J Pharm Pharmacol. 1991;43(7):457–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • French DL, Mauger JW. Analysis of the physicochemical properties and dissolution traits of mesalamine: relevance to managed intestinal drug supply. Pharm Res. 1993;10(9):1285–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarkar D, et al. Sustained launch gastroretentive pill of metformin hydrochloride primarily based on poly (acrylic acid)-grafted-gellan. Int J Biol Macromol. 2017;96:137–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takeuchi H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness within the oral administration of calcitonin to rats. J Management Launch. 2003;86(2–3):235–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naderkhani E, et al. Improved permeability of acyclovir: optimization of mucoadhesive liposomes utilizing the phospholipid vesicle-based permeation assay. J Pharm Sci. 2014;103(2):661–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmad N, et al. Enhancement of oral insulin bioavailability: in vitro and in vivo evaluation of nanoporous stimuli-responsive hydrogel microparticles. Skilled Opin Drug Deliv. 2016;13(5):621–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cevher E, et al. Analysis of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Deliv. 2008;15(1):57–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonengel S, et al. Thiolated alkyl-modified carbomers: novel excipients for mucoadhesive emulsions. Eur J Pharm Sci. 2015;75:123–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lamson NG, et al. Anionic nanoparticles allow the oral supply of proteins by enhancing intestinal permeability. Nat Biomed Eng. 2020;4(1):84–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chickering DE, Mathiowitz E. Bioadhesive microspheres: I. A novel electrobalance-based technique to review adhesive interactions between particular person microspheres and intestinal mucosa. J Management Launch. 1995;34(3):251–62.

    CAS 
    Article 

    Google Scholar
     

  • Wee S, Gombotz WR. Protein launch from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lengthy L, et al. Investigation of vitamin B12-modified amphiphilic sodium alginate derivatives for enhancing the oral supply efficacy of peptide medication. Int J Nanomed. 2019;14:7743–58.

    CAS 
    Article 

    Google Scholar
     

  • Ghosal Okay, et al. Novel interpenetrating polymeric community primarily based microbeads for supply of poorly water soluble drug. J Polym Res. 2020;27(4):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Azad AK, et al. Electro-hydrodynamic assisted synthesis of lecithin-stabilized peppermint oil-loaded alginate microbeads for intestinal drug supply. Int J Biol Macromol. 2021;185:861–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jindal AB, Wasnik MN, Nair HA. Synthesis of thiolated alginate and analysis of mucoadhesiveness, cytotoxicity and launch retardant properties. Indian J Pharm Sci. 2010;72(6):766–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davidovich-Pinhas M, Harari O, Bianco-Peled H. Evaluating the mucoadhesive properties of drug supply methods primarily based on hydrated thiolated alginate. J Management Launch. 2009;136(1):38–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernkop-Schnurch A, Kast CE, Richter MF. Enchancment within the mucoadhesive properties of alginate by the covalent attachment of cysteine. J Management Launch. 2001;71(3):277–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Netsomboon Okay, Bernkop-Schnurch A. Mucoadhesive vs. mucopenetrating particulate drug supply. Eur J Pharm Biopharm. 2016;98:76–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grabovac V, Guggi D, Bernkop-Schnurch A. Comparability of the mucoadhesive properties of varied polymers. Adv Drug Deliv Rev. 2005;57(11):1713–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mortazavi SAR. Investigation of varied parameters influencing the period of mucoadhesion of some polymer containing discs. DARU J Pharm Sci. 2002;10(3):98–104.

    CAS 

    Google Scholar
     

  • Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res. 1987;4(6):457–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suwannateep N, et al. Mucoadhesive curcumin nanospheres: organic exercise, adhesion to abdomen mucosa and launch of curcumin into the circulation. J Management Launch. 2011;151(2):176–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiong W, et al. Enhancing the photostability and bioaccessibility of resveratrol utilizing ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Meals Funct. 2018;9(7):3788–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gadalla HH, et al. Colon-targeting of progesterone utilizing hybrid polymeric microspheres improves its bioavailability and in vivo organic efficacy. Int J Pharm. 2020;577: 119070.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaur Okay, Kumar P, Kush P. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for protected and efficient remedy of fungal an infection. Biomed Pharmacother. 2020;128:110297.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nair AB, et al. HPMC- and PLGA-based nanoparticles for the mucoadhesive supply of sitagliptin: optimization and in vivo analysis in rats. Supplies (Basel). 2019;12(24):4239.

    CAS 
    Article 

    Google Scholar
     

  • Wooden KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin supply. Biomacromol. 2008;9(4):1293–8.

    CAS 
    Article 

    Google Scholar
     

  • Catron ND, Lee H, Messersmith PB. Enhancement of poly(ethylene glycol) mucoadsorption by biomimetic finish group functionalization. Biointerphases. 2006;1(4):134–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng H, et al. Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral supply. J Management Launch. 2020;321:641–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amin MK, Boateng JS. Floor modification of cell composition of matter (MCM)-41 sort silica nanoparticles for potential oral mucosa vaccine supply. J Pharm Sci. 2020;109:2271–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laha B, et al. Novel propyl karaya gum nanogels for bosentan: in vitro and in vivo drug supply efficiency. Colloids Surf B Biointerfaces. 2019;180:263–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng Z, et al. Growth of keratin nanoparticles for managed gastric mucoadhesion and drug launch. J Nanobiotechnol. 2018;16(1):24.

    Article 
    CAS 

    Google Scholar
     

  • Harloff-Helleberg S, et al. Exploring the mucoadhesive habits of sucrose acetate isobutyrate: a novel excipient for oral supply of biopharmaceuticals. Drug Deliv. 2019;26(1):532–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao P, et al. Nanoparticle-assembled bioadhesive coacervate coating with extended gastrointestinal retention for inflammatory bowel illness remedy. Nat Commun. 2021;12(1):7162.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker D, et al. Enzymatically energetic biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):e1500501.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Choi H, et al. Bioinspired urease-powered micromotor as an energetic oral drug supply service in abdomen. Bioact Mater. 2022;9:54–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, et al. Speedy transport of germ-mimetic nanoparticles with twin conformational polyethylene glycol chains in organic tissues. Sci Adv. 2020;6(6):eaay9937.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Y, et al. Chiral mesoporous silica nano-screws as an environment friendly biomimetic oral drug supply platform via a number of topological mechanisms. Acta Pharm Sin B. 2021;12:1432–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang Y, et al. Nanoparticles focused in opposition to cryptococcal pneumonia by interactions between Chitosan and its peptide ligand. Nano Lett. 2018;18(10):6207–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai L, et al. Boston ivy-inspired disc-like adhesive microparticles for drug supply. Analysis (Wash D C). 2021;2021:9895674.

    CAS 

    Google Scholar
     

  • Chen W, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug supply. Sci Adv. 2022;8(1):eabk1792.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang M, et al. Biodegradable nanoparticles composed fully of protected supplies that quickly penetrate human mucus. Angew Chem Int Ed Engl. 2011;50(11):2597–600.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lai SK, et al. Speedy transport of enormous polymeric nanoparticles in recent undiluted human mucus. Proc Natl Acad Sci USA. 2007;104(5):1482–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bourganis V, et al. On the synthesis of mucus permeating nanocarriers. Eur J Pharm Biopharm. 2015;97(Pt A):239–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang YY, et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” via the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mert O, et al. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Management Launch. 2012;157(3):455–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maisel Okay, et al. Nanoparticles coated with excessive molecular weight PEG penetrate mucus and supply uniform vaginal and colorectal distribution in vivo. Nanomedicine. 2016;11(11):1337–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu Q, et al. Scalable technique to supply biodegradable nanoparticles that quickly penetrate human mucus. J Management Launch. 2013;170(2):279–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reboredo C, et al. Preparation and analysis of PEG-coated zein nanoparticles for oral drug supply functions. Int J Pharm. 2021;597:120287.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderski J, et al. Mucus-penetrating nanoparticles: promising drug supply methods for the photodynamic remedy of intestinal most cancers. Eur J Pharm Biopharm. 2018;129:1–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan X, et al. Hydrophilic and electroneutral nanoparticles to beat mucus trapping and improve oral supply of insulin. Mol Pharm. 2020;17(9):3177–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo S, et al. Analysis on the destiny of polymeric nanoparticles within the technique of the intestinal absorption primarily based on mannequin nanoparticles with numerous traits: measurement, floor cost and pro-hydrophobics. J Nanobiotechnol. 2021;19(1):32.

    CAS 
    Article 

    Google Scholar
     

  • Sato H, et al. Polymeric nanocarriers with mucus-diffusive and mucus-adhesive properties to regulate pharmacokinetic habits of orally dosed Cyclosporine A. J Pharm Sci. 2020;109(2):1079–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Warren MR, et al. Milk exosomes with enhanced mucus penetrability for oral supply of siRNA. Biomater Sci. 2020;9:4260–77.

    Article 

    Google Scholar
     

  • Le Z, et al. Antioxidant enzymes sequestered inside lipid-polymer hybrid nanoparticles for the native remedy of inflammatory bowel illness. ACS Appl Mater Interfaces. 2021;13(47):55966–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goto T, et al. Gastrointestinal transit and mucoadhesive traits of complexation hydrogels in rats. J Pharm Sci. 2006;95(2):462–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Puranik AS, et al. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral supply of hydrophobic therapeutics. Eur J Pharm Biopharm. 2016;108:196–213.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang BC, et al. Biodegradable polymer nanoparticles that quickly penetrate the human mucus barrier. Proc Natl Acad Sci USA. 2009;106(46):19268–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients, vol. 6. London: Pharmaceutical Press; 2006.


    Google Scholar
     

  • Emanuele RM. FLOCOR: a brand new anti-adhesive, rheologic agent. Skilled Opin Investig Medication. 1998;7(7):1193–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, et al. Novel mucus-penetrating liposomes as a possible oral drug supply system: preparation, in vitro characterization, and enhanced mobile uptake. Int J Nanomed. 2011;6:3151–62.

    CAS 

    Google Scholar
     

  • Chen D, et al. Comparative research of Pluronic((R)) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm. 2013;449(1–2):1–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine through pluronic P123/F127 combined polymeric micelles: formulation, optimization utilizing central composite design and in vivo bioavailability research. Drug Deliv. 2018;25(1):132–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang Y, et al. Oral nanotherapeutics with enhanced mucus penetration and ROS-responsive drug launch capacities for supply of curcumin to colitis tissues. J Mater Chem B. 2021;9:1604–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Date AA, et al. Mucus-penetrating budesonide nanosuspension enema for native remedy of inflammatory bowel illness. Biomaterials. 2018;185:97–105.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Music W, et al. Enhanced digestion inhibition and mucus penetration of F127-modified self-nanoemulsions for improved oral supply. Asian J Pharm Sci. 2018;13(4):326–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wada A, Nakamura H. Nature of the cost distribution in proteins. Nature. 1981;293(5835):757–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Michen B, Graule T. Isoelectric factors of viruses. J Appl Microbiol. 2010;109(2):388–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pereira de Sousa I, et al. Mucus permeating carriers: formulation and characterization of extremely densely charged nanoparticles. Eur J Pharm Biopharm. 2015;97(Pt A):273–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pereira de Sousa I, et al. Insulin loaded mucus permeating nanoparticles: addressing the floor traits as characteristic to enhance mucus permeation. Int J Pharm. 2016;500(1–2):236–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu J, et al. Biomimetic Viruslike and cost reversible nanoparticles to sequentially overcome mucus and epithelial boundaries for oral insulin supply. ACS Appl Mater Interfaces. 2018;10(12):9916–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bao C, et al. Enhanced transport of form and rigidity-tuned α-lactalbumin nanotubes throughout intestinal mucus and mobile boundaries. Nano Lett. 2020;20(2):1352–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng H, et al. Design of folic acid adorned virus-mimicking nanoparticles for enhanced oral insulin supply. Int J Pharm. 2021;596:120297.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, et al. Virus-mimicking mesoporous silica nanoparticles with an electrically impartial and hydrophilic floor to enhance the oral absorption of insulin by breaking via twin boundaries of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces. 2021;13(15):18077–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han X, et al. Zwitterionic micelles effectively ship oral insulin with out opening tight junctions. Nat Nanotechnol. 2020;15:605–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal boundaries. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for environment friendly oral insulin supply. Biomater Sci. 2021;9(3):685–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biosca A, et al. Zwitterionic self-assembled nanoparticles as carriers for Plasmodium focusing on in malaria oral remedy. J Management Launch. 2021;331:364–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu S, et al. Zwitterionic polydopamine modified nanoparticles as an environment friendly nanoplatform to beat each the mucus and epithelial boundaries. Chem Eng J. 2022;428:132107.

    CAS 
    Article 

    Google Scholar
     

  • Dunnhaupt S, et al. Nano-carrier methods: methods to beat the mucus gel barrier. Eur J Pharm Biopharm. 2015;96:447–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rohrer J, et al. Mucus permeating thiolated self-emulsifying drug supply methods. Eur J Pharm Biopharm. 2016;98:90–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sheffner AL. The discount in vitro in viscosity of mucoprotein options by a brand new mucolytic agent, N-acetyl-l-cysteine. Ann N Y Acad Sci. 1963;106:298–310.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takatsuka S, et al. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur J Pharm Biopharm. 2006;62(1):52–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian C, et al. N-acetyl-L-cysteine functionalized nanostructured lipid service for bettering oral bioavailability of curcumin: preparation, in vitro and in vivo evaluations. Drug Deliv. 2017;24(1):1605–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Samaridou E, et al. Enzyme-functionalized PLGA nanoparticles with enhanced mucus permeation price. Nano Life. 2014;4(04):1441013.

    CAS 
    Article 

    Google Scholar
     

  • Müller C, et al. Preparation and characterization of mucus-penetrating papain/poly (acrylic acid) nanoparticles for oral drug supply purposes. J Nanopart Res. 2013;15(1):1353.

    Article 
    CAS 

    Google Scholar
     

  • Pereira de Sousa I, et al. Nanoparticles adorned with proteolytic enzymes, a promising technique to beat the mucus barrier. Eur J Pharm Biopharm. 2015;97(Pt A):257–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zafar H, et al. Design of enzyme adorned mucopermeating nanocarriers for eradication of H. pylori an infection. J Nanopart Res. 2020;22(1):1–21.

    Article 
    CAS 

    Google Scholar
     

  • Efiana NA, et al. Improved intestinal mucus permeation of vancomycin through incorporation into nanocarrier containing papain-palmitate. J Pharm Sci. 2019;108(10):3329–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Razzaq S, et al. A multifunctional polymeric micelle for focused supply of paclitaxel by the inhibition of the P-glycoprotein transporters. Nanomaterials. 2021;11(11):2858.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Homayun B, Choi HJ. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int J Pharm. 2020;579:119152.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MuGard (oral mucoadhesive) FDA Approval Historical past. mso-padding-alt:31.0pt 31.0pt 31.0pt 31.0pt mso-border-shadow:sure”> https://www.medication.com/historical past/mugard.html. Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication – Sitavig. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=203791.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication—Oravig. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=BasicSearch.course of.  Accessed on 6 Nov 2021

  • 510(ok) Premarket Notification—ProctiGard. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K140558.  Accessed on 6 Nov 2021

  • Orphan Drug Designations and Approvals—SP1049C. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=248107.  Accessed on 6 Nov 2021

  • Drug Approval Package deal: Cetylev effervescent tablets for oral resolution, 500 mg and a pair of.5 grams (acetylcysteine). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/207916_toc.cfm.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Diphenoxylate Hydrochloride and Atropine Sulfate). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=085372.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (TARKA). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=020591.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (KADIAN). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=020616.  Accessed on 6 Nov 2021

  • Drug Approval Package deal: Uroxatral (alfuzosin hydrochloride) prolonged launch tablets. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/021287_uroxatral_toc.cfm.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Okay-Tab). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=018279.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Exalgo). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=021217.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Lescol XL). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=021192.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Mirapex). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=020667.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Voltaren-XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=020254.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Kapspargo Sprinkle). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=210428.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Glumetza). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=021748.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Razadyne ER). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=021615.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Trokendi XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=201635.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Wellbutrin XL). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=021515.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Elepsia XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=204417.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication (Aciphex). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&varApplNo=020973.  Accessed on 6 Nov 2021

  • U.S. FDA approves generic drug product containing Lubrizol’s Carbopol® Polymer (Carbomer Homopolymer). https://newscenter.lubrizol.com/news-releases/news-release-details/us-fda-approves-generic-drug-product-containing-lubrizols?ID=1745109&c=250972&p=irol-newsArticle.  Accessed on 6 Nov 2021

  • Valeant and Progenics Announce FDA approves relistor tablets for the remedy of opioid-induced constipation in adults with persistent non-cancer ache. https://www.medication.com/newdrugs/valeant-progenics-announce-fda-approves-relistor-opioid-induced-constipation-adults-chronic-non-4411.html.  Accessed on 6 Nov 2021

  • Medication@FDA: FDA-Permitted Medication—Meprom. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?occasion=overview.course of&ApplNo=020500.  Accessed on 6 Nov 2021

  • Drug Approval Package deal—Malarone. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/021078_malarone.cfm.  Accessed on 6 Nov 2021

  • Eastwood GL. Gastrointestinal epithelial renewal. Gastroenterology. 1977;72(5, Half 1):962–75.  Accessed on 6 Nov 2021

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments