Friday, December 29, 2023
HomeNanotechnologyMethods for non-viral vectors focusing on organs past the liver

Methods for non-viral vectors focusing on organs past the liver


  • Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: mobile uptake and hepatobiliary elimination. J. Management. Launch 240, 332–348 (2016).

    CAS 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the medical translation of nanomedicines containing nucleic acid-based medicine. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene modifying for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA supply to the lung. Nat. Mater. 22, 369–379 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, R. et al. Hydrogels for RNA supply. Nat. Mater. 22, 818–831 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Van Haasteren, J. et al. The supply problem: fulfilling the promise of therapeutic genome modifying. Nat. Biotechnol. 38, 845–855 (2020).

    Article 

    Google Scholar
     

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing supply techniques. Nat. Nanotechnol. 15, 819–829 (2020). This Overview totally discusses the traits of NPs required for efficient supply inside a organic context.

    Article 
    CAS 

    Google Scholar
     

  • Patel, S. et al. Temporary replace on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alameh, M.-G. et al. Lipid nanoparticles improve the efficacy of mRNA and protein subunit vaccines by inducing strong T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles increase the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tsoi, Okay. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Klibanov, A. L., Maruyama, Okay., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols successfully lengthen the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Witzigmann, D. et al. Lipid nanoparticle expertise for therapeutic gene regulation within the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akinc, A. et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). This research found that the ApoE–LDLR pathway facilitates hepatocyte transfection when LNPs include ionizable cationic lipids however not when completely cationic lipids are used.

    Article 
    CAS 

    Google Scholar
     

  • Nair, J. Okay. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits strong RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kasiewicz, L. N. et al. GalNAc–lipid nanoparticles allow non-LDLR dependent hepatic supply of a CRISPR base modifying remedy. Nat. Commun. 14, 2776 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ozelo, M. C. et al. Valoctocogene roxaparvovec gene remedy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Y. et al. Decision of liver cirrhosis utilizing vitamin A-coupled liposomes to ship siRNA towards a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lawitz, E. J. et al. BMS‐986263 in sufferers with superior hepatic fibrosis: 36‐week outcomes from a randomized, placebo‐managed section 2 trial. Hepatology 75, 912–923 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Ligand-tethered lipid nanoparticles for focused RNA supply to deal with liver fibrosis. Nat. Commun. 14, 75 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Paunovska, Okay. et al. Nanoparticles containing oxidized ldl cholesterol ship mrna to the liver microenvironment at clinically related doses. Adv. Mater. 31, 1807748 (2019).

    Article 

    Google Scholar
     

  • Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA supply. Acc. Chem. Res. 55, 2–12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Solar, C., Wang, C., Jankovic, Okay. E. & Dong, Y. Lipids and lipid derivatives for RNA supply. Chem. Rev. 121, 12181–12277 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Viger-Gravel, J. et al. Construction of lipid nanoparticles containing sirna or mrna by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Goula, D. et al. Polyethylenimine-based intravenous supply of transgenes to mouse lung. Gene Ther. 5, 1291–1295 (1998).

    CAS 

    Google Scholar
     

  • Inexperienced, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library method yields perception into nonviral gene supply. Acc. Chem. Res. 41, 749–759 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Joubert, F. et al. Exact and systematic finish group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to enhance cytosolic supply of mRNA. J. Management. Launch 356, 580–594 (2023).

    CAS 

    Google Scholar
     

  • Yang, W., Mixich, L., Boonstra, E. & Cabral, H. Polymer-based mRNA supply methods for superior therapies. Adv. Healthc. Mater. 12, 2202688 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cabral, H., Miyata, Okay., Osada, Okay. & Kataoka, Okay. Block copolymer micelles in nanomedicine functions. Chem. Rev. 118, 6844–6892 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, D. & Wagner, E. Outlined polymeric supplies for gene supply. Macromol. Biosci. 15, 600–612 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Reinhard, S. & Wagner, E. Tips on how to sort out the problem of siRNA supply with sequence-defined oligoamino amides. Macromol. Biosci. 17, 1600152 (2017).

    Article 

    Google Scholar
     

  • DeSimone, J. M. Co-opting Moore’s legislation: therapeutics, vaccines and interfacially energetic particles manufactured through PRINT®. J. Management. Launch 240, 541–543 (2016).

    CAS 

    Google Scholar
     

  • Patel, A. Okay. et al. Inhaled nanoformulated mRNA polyplexes for protein manufacturing in lung epithelium. Adv. Mater. 31, 1805116 (2019). This research explored the appliance of polymeric NPs for inhaled mRNA supply, highlighting the potential benefit of polymers for nebulization by their self-assembly.

    Article 

    Google Scholar
     

  • Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with steady group annotation. PLoS Biol. 10, e1001450 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wahlgren, J. et al. Plasma exosomes can ship exogenous brief interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130–e130 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti, L. et al. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ståhl, A. et al. A novel mechanism of bacterial toxin switch inside host blood cell-derived microvesicles. PLoS Pathog. 11, e1004619 (2015).

    Article 

    Google Scholar
     

  • Melamed, J. R. et al. Ionizable lipid nanoparticles ship mRNA to pancreatic β cells through macrophage-mediated gene switch. Sci. Adv. 9, eade1444 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. ARMMs as a flexible platform for intracellular supply of macromolecules. Nat. Commun. 9, 960 (2018).

    Article 

    Google Scholar
     

  • Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its personal mRNA and will be pseudotyped for mRNA supply. Science 373, 882–889 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elsharkasy, O. M. et al. Extracellular vesicles as drug supply techniques: why and the way? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klein, D. et al. Centyrin ligands for extrahepatic supply of siRNA. Mol. Ther. 29, 2053–2066 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brown, Okay. M. et al. Increasing RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wels, M., Roels, D., Raemdonck, Okay., De Smedt, S. C. & Sauvage, F. Challenges and methods for the supply of biologics to the cornea. J. Management. Launch 333, 560–578 (2021).

    CAS 

    Google Scholar
     

  • Baran-Rachwalska, P. et al. Topical siRNA supply to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J. Management. Launch 326, 192–202 (2020).

    CAS 

    Google Scholar
     

  • Bogaert, B. et al. A lipid nanoparticle platform for mRNA supply by repurposing of cationic amphiphilic medicine. J. Management. Launch 350, 256–270 (2022).

    CAS 

    Google Scholar
     

  • Kim, H. M. & Woo, S. J. Ocular drug supply to the retina: present improvements and future views. Pharmaceutics 13, 108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yiu, G. et al. Suprachoroidal and subretinal injections of AAV utilizing transscleral microneedles for retinal gene supply in nonhuman primates. Mol. Ther. Strategies Clin. Dev. 16, 179–191 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weng, C. Y. Bilateral subretinal voretigene neparvovec-rzyl (Luxturna) gene remedy. Ophthalmol. Retin. 3, 450 (2019).

    Article 

    Google Scholar
     

  • Jaskolka, M. C. et al. Exploratory security profile of EDIT-101, a first-in-human in vivo CRISPR gene modifying remedy for CEP290-related retinal degeneration. Make investments. Ophthalmol. Vis. Sci. 63, 2836–A0352 (2022).


    Google Scholar
     

  • Chirco, Okay. R., Martinez, C. & Lamba, D. A. Developments in pre-clinical improvement of gene editing-based therapies to deal with inherited retinal ailments. Vis. Res. 209, 108257 (2023).

    Article 

    Google Scholar
     

  • Leroy, B. P. et al. Efficacy and security of sepofarsen, an intravitreal RNA antisense oligonucleotide, for the remedy of CEP290-associated Leber congenital amaurosis (LCA10): a randomized, double-masked, sham-controlled, section 3 research (ILLUMINATE). Make investments. Ophthalmol. Vis. Sci. 63, 4536-F0323 (2022).


    Google Scholar
     

  • Ammar, M. J., Hsu, J., Chiang, A., Ho, A. C. & Regillo, C. D. Age-related macular degeneration remedy: a assessment. Curr. Opin. Ophthalmol. 31, 215–221 (2020).

    Article 

    Google Scholar
     

  • Goldberg, R. et al. Efficacy of intravitreal pegcetacoplan in sufferers with geographic atrophy (GA): 12-month outcomes from the section 3 OAKS and DERBY research. Make investments. Ophthalmol. Vis. Sci. 63, 1500–1500 (2022).


    Google Scholar
     

  • Shen, J. et al. Suprachoroidal gene switch with nonviral nanoparticles. Sci. Adv. 6, eaba1606 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tan, G. et al. A core-shell nanoplatform as a nonviral vector for focused supply of genes to the retina. Acta Biomater. 134, 605–620 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jin, J. et al. Anti-inflammatory and antiangiogenic results of nanoparticle-mediated supply of a pure angiogenic inhibitor. Investig. Opthalmol. Vis. Sci. 52, 6230 (2011).

    CAS 

    Google Scholar
     

  • Keenan, T. D. L., Cukras, C. A. & Chew, E. Y. Age-related macular degeneration: epidemiology and medical features. Adv. Exp. Med. Biol. 1256, 1–31 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein advanced for in vivo genome modifying. Nat. Nanotechnol. 14, 974–980 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mirjalili Mohanna, S. Z. et al. LNP-mediated supply of CRISPR RNP for wide-spread in vivo genome modifying in mouse cornea. J. Management. Launch 350, 401–413 (2022).

    CAS 

    Google Scholar
     

  • Patel, S., Ryals, R. C., Weller, Okay. Okay., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for supply of messenger RNA to the again of the attention. J. Management. Launch 303, 91–100 (2019).

    CAS 

    Google Scholar
     

  • Solar, D. et al. Non-viral gene remedy for stargardt illness with ECO/pRHO-ABCA4 self-assembled nanoparticles. Mol. Ther. 28, 293–303 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles ship mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    Article 

    Google Scholar
     

  • Huertas, A. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory ailments: highlights from fundamental analysis to remedy. Eur. Respir. J. 51, 1700745 (2018).

    Article 

    Google Scholar
     

  • Hong, Okay.-H. et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is enough to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dahlman, J. E. et al. In vivo endothelial siRNA supply utilizing polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat. Nanotechnol. 15, 313–320 (2020). This groundbreaking research discovered that incorporating otherwise charged (SORT) lipids into the traditional four-component LNPs shifts the situation of mRNA transfection among the many liver, spleen and lungs.

    Article 
    CAS 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ focusing on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021). This work totally investigated the affect of SORT lipids added to LNPs on the formation of the biomolecular corona on the NP floor and its position in reaching organ-specific transfection.

    Article 
    CAS 

    Google Scholar
     

  • Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene supply by lipid nanoparticles. J. Management. Launch https://doi.org/10.1016/j.jconrel.2023.03.052 (2023).

  • Qiu, M. et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the remedy of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic supply of mRNA to the lungs. Angew. Chem. Int. Ed. 55, 13808–13812 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shen, A. M. & Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary supply. J. Management. Launch 326, 222–244 (2020).

    CAS 

    Google Scholar
     

  • Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene remedy in sufferers with cystic fibrosis: a randomised, double-blind, placebo-controlled, section 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular supply of mRNA by inhalation. ACS Nano 16, 14792–14806 (2022).

    CAS 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, Y. et al. Efficient mRNA pulmonary supply by dry powder formulation of PEGylated artificial KL4 peptide. J. Management. Launch 314, 102–115 (2019).

    CAS 

    Google Scholar
     

  • Popowski, Okay. D. et al. Inhalable dry powder mRNA vaccines based mostly on extracellular vesicles. Matter 5, 2960–2974 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Telko, M. J. & Hickey, A. J. Dry powder inhaler formulation. Respir. Care 50, 1209 (2005).


    Google Scholar
     

  • Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA supply and genome modifying. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

  • Fahy, J. V. & Dickey, B. F. Airway mucus operate and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, C. S. et al. Nanoparticles that don’t adhere to mucus present uniform and long-lasting drug supply to airways following inhalation. Sci. Adv. 3, e1601556 (2017).

    Article 

    Google Scholar
     

  • Wang, J. et al. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 367, eaau0810 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and reworking. Dis. Mannequin. Mech. 3, 545–556 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rojas, L. A. et al. Personalised RNA neoantigen vaccines stimulate T cells in pancreatic most cancers. Nature 618, 144–150 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bevers, S. et al. mRNA–LNP vaccines tuned for systemic immunization induce sturdy antitumor immunity by participating splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic obstacles to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kranz, L. M. et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature 534, 396–401 (2016).

    Article 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR–Cas gene modifying. Nat. Mater. 20, 701–710 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fenton, O. S. et al. Synthesis and organic analysis of ionizable lipid supplies for the in vivo supply of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Imidazole‐based mostly artificial lipidoids for in vivo mRNA supply into major T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020).

    Article 
    CAS 

    Google Scholar
     

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, Okay. A. The substitute of helper lipids with charged alternate options in lipid nanoparticles facilitates focused mRNA supply to the spleen and lungs. J. Management. Launch 345, 819–831 (2022).

    CAS 

    Google Scholar
     

  • McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA supply into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article 

    Google Scholar
     

  • McKinlay, C. J. et al. Cost-altering releasable transporters (CARTs) for the supply and launch of mRNA in residing animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ben-Akiva, E. et al. Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free focusing on of splenic dendritic cells for most cancers vaccination. Proc. Natl Acad. Sci. USA 120, e2301606120 (2023).

    Article 

    Google Scholar
     

  • Tombácz, I. et al. Extremely environment friendly CD4+ T cell focusing on and genetic recombination utilizing engineered CD4+ cell-homing mRNA–LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to deal with cardiac damage. Science 375, 91–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 170, 83–112 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lindsay, Okay. E. et al. Visualization of early occasions in mRNA vaccine supply in non-human primates through PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019). This pioneering research delved into the biodistribution of lipid-based mRNA vaccines after their intramuscular injection into non-human primates utilizing a twin radionuclide–near-infrared probe.

    Article 
    CAS 

    Google Scholar
     

  • Alberer, M. et al. Security and immunogenicity of a mRNA rabies vaccine in wholesome adults: an open-label, non-randomised, potential, first-in-human section 1 medical trial. Lancet 390, 1511–1520 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Evaluation Report: Comirnaty EMA/707383/2020 (European Medicines Company, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  • Evaluation Report: COVID-19 Vaccine Moderna EMA/15689/2021 (European Medicines Company, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  • Ke, X. et al. Bodily and chemical profiles of nanoparticles for lymphatic focusing on. Adv. Drug Deliv. Rev. 151–152, 72–93 (2019).

    Article 

    Google Scholar
     

  • Hansen, Okay. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting supply of mRNA most cancers vaccine elicits strong CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA supply to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sahin, U. et al. Personalised RNA mutanome vaccines mobilize poly-specific therapeutic immunity towards most cancers. Nature 547, 222–226 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kreiter, S. et al. Intranodal vaccination with bare antigen-encoding rna elicits potent prophylactic and therapeutic antitumoral immunity. Most cancers Res. 70, 9031–9040 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fan, C.-H. et al. Folate-conjugated gene-carrying microbubbles with targeted ultrasound for concurrent blood–mind barrier opening and native gene supply. Biomaterials 106, 46–57 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. J. et al. Boosting mind uptake of a therapeutic antibody by lowering its affinity for a transcytosis goal. Sci. Transl. Med. 3, 84ra44 (2011).

    Article 

    Google Scholar
     

  • Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–mind barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154 (2014).

    Article 

    Google Scholar
     

  • Kariolis, M. S. et al. Mind supply of therapeutic proteins utilizing an Fc fragment blood–mind barrier transport automobile in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ullman, J. C. et al. Mind supply and exercise of a lysosomal enzyme utilizing a blood–mind barrier transport automobile in mice. Sci. Transl. Med. 12, eaay1163 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced mind supply by intravenous injection. Sci. Adv. 6, eabb4429 (2020). This research means that designing lipids to imitate neurotransmitters and incorporating them into NPs can improve the supply of nucleic acids and proteins to the mind following IV injection.

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Blood–mind barrier-penetrating siRNA nanomedicine for Alzheimer’s illness remedy. Sci. Adv. 6, eabc7031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. BBB pathophysiology-independent supply of siRNA in traumatic mind damage. Sci. Adv. 7, eabd6889 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of huge polymeric nanoparticles inside mind tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    Article 

    Google Scholar
     

  • Thorne, R. G. & Nicholson, C. In vivo diffusion evaluation with quantum dots and dextrans predicts the width of mind extracellular area. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. et al. Supply of self-replicating messenger RNA into the mind for the remedy of ischemic stroke. J. Management. Launch 350, 471–485 (2022).

    CAS 

    Google Scholar
     

  • Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering utilizing scaffolds for drug supply. Adv. Drug Deliv. Rev. 59, 325–338 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Saucier-Sawyer, J. Okay. et al. Distribution of polymer nanoparticles by convection-enhanced supply to mind tumors. J. Management. Launch 232, 103–112 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dhaliwal, H. Okay., Fan, Y., Kim, J. & Amiji, M. M. Intranasal supply and transfection of mRNA therapeutics within the mind utilizing cationic liposomes. Mol. Pharm. 17, 1996–2005 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frangoul, H. et al. CRISPR–Cas9 gene modifying for sickle cell illness and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hirabayashi, H. & Fujisaki, J. Bone-specific drug supply techniques: approaches through chemical modification of bone-seeking brokers. Clin. Pharmacokinet. 42, 1319–1330 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G., Mostafa, N. Z., Incani, V., Kucharski, C. & Uludağ, H. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone ailments. J. Biomed. Mater. Res. A 100, 684–693 (2012).

    Article 

    Google Scholar
     

  • Giger, E. V. et al. Gene supply with bisphosphonate-stabilized calcium phosphate nanoparticles. J. Management. Launch 150, 87–93 (2011).

    CAS 

    Google Scholar
     

  • Xue, L. et al. Rational design of bisphosphonate lipid-like supplies for mRNA supply to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022). This research proposes that enhancing lipid design to imitate bisphosphates can enhance LNP-mediated mRNA supply to the bone microenvironment after IV injection.

    Article 
    CAS 

    Google Scholar
     

  • Liang, C. et al. Aptamer-functionalized lipid nanoparticles focusing on osteoblasts as a novel RNA interference-based bone anabolic technique. Nat. Med. 21, 288–294 (2015).

    Article 

    Google Scholar
     

  • Zhang, Y., Wei, L., Miron, R. J., Shi, B. & Bian, Z. Anabolic bone formation through a site-specific bone-targeting supply system by interfering with semaphorin 4D expression. J. Bone Miner. Res. 30, 286–296 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. A supply system focusing on bone formation surfaces to facilitate RNAi-based anabolic remedy. Nat. Med. 18, 307–314 (2012).

    Article 

    Google Scholar
     

  • Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA supply to hematopoietic stem and progenitor cells through focused lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    CAS 

    Google Scholar
     

  • Sago, C. D. et al. Nanoparticles that ship RNA to bone marrow recognized by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Li, Y., Chen, Y. E., Chen, J. & Ma, P. X. Cell-free 3D scaffold with two-stage supply of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 7, 10376 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. In vivo bone tissue induction by freeze-dried collagen–nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J. Management. Launch 334, 188–200 (2021).

    CAS 

    Google Scholar
     

  • Athirasala, A. et al. Matrix stiffness regulates lipid nanoparticle-mRNA supply in cell-laden hydrogels. Nanomed. Nanotechnol. Biol. Med. 42, 102550 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nims, R. J., Pferdehirt, L. & Guilak, F. Mechanogenetics: harnessing mechanobiology for mobile engineering. Curr. Opin. Biotechnol. 73, 374–379 (2022).

    Article 
    CAS 

    Google Scholar
     

  • O’Driscoll, C. M., Bernkop-Schnürch, A., Friedl, J. D., Préat, V. & Jannin, V. Oral supply of non-viral nucleic acid-based therapeutics—do we now have the center for this? Eur. J. Pharm. Sci. 133, 190–204 (2019).

    Article 

    Google Scholar
     

  • Ball, R. L., Bajaj, P. & Whitehead, Okay. A. Oral supply of siRNA lipid nanoparticles: destiny within the GI tract. Sci. Rep. 8, 2178 (2018).

    Article 

    Google Scholar
     

  • Attarwala, H., Han, M., Kim, J. & Amiji, M. Oral nucleic acid remedy utilizing multi-compartmental supply techniques. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1478 (2018).

    Article 

    Google Scholar
     

  • Abramson, A. et al. An ingestible self-orienting system for oral supply of macromolecules. Science 363, 611–615 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Abramson, A. et al. Oral mRNA supply utilizing capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022). This research reveals the potential for supply of mRNA-loaded PBAE NPs on to the submucosa of the abdomen utilizing orally ingested robotic capsules.

    Article 
    CAS 

    Google Scholar
     

  • Doll, S. et al. Area and cell-type resolved quantitative proteomic map of the human coronary heart. Nat. Commun. 8, 1469 (2017).

    Article 

    Google Scholar
     

  • Xin, M., Olson, E. N. & Bassel-Duby, R. Mending damaged hearts: cardiac improvement as a foundation for grownup coronary heart regeneration and restore. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zangi, L. et al. Modified mRNA directs the destiny of coronary heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tang, R., Lengthy, T., Lui, Okay. O., Chen, Y. & Huang, Z.-P. A roadmap for fixing the guts: RNA regulatory networks in cardiac illness. Mol. Ther. Nucleic Acids 20, 673–686 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, P. et al. A protracted noncoding RNA protects the guts from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in sufferers present process coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Täubel, J. et al. Novel antisense remedy focusing on microRNA-132 in sufferers with coronary heart failure: outcomes of a first-in-human section 1b randomized, double-blind, placebo-controlled research. Eur. Coronary heart J. 42, 178–188 (2021).

    Article 

    Google Scholar
     

  • Nishiyama, T. et al. Exact genomic modifying of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reichart, D. et al. Environment friendly in vivo genome modifying prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chai, A. C. et al. Base modifying correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rubin, J. D. & Barry, M. A. Bettering molecular remedy within the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    Article 

    Google Scholar
     

  • Oroojalian, F. et al. Latest advances in nanotechnology-based drug supply techniques for the kidney. J. Management. Launch 321, 442–462 (2020).

    CAS 

    Google Scholar
     

  • Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney damage. Nat. Biomed. Eng. 2, 865–877 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. NIR-II photoacoustic-active DNA origami nanoantenna for early analysis and good remedy of acute kidney damage. J. Am. Chem. Soc. 144, 23522–23533 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stribley, J. M., Rehman, Okay. S., Niu, H. & Christman, G. M. Gene remedy and reproductive medication. Fertil. Steril. 77, 645–657 (2002).

    Article 

    Google Scholar
     

  • Boekelheide, Okay. & Sigman, M. Is gene remedy for the remedy of male infertility possible? Nat. Clin. Pract. Urol. 5, 590–593 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Gascón, A., del Pozo-Rodríguez, A., Isla, A. & Solinís, M. A. Vaginal gene remedy. Adv. Drug Deliv. Rev. 92, 71–83 (2015).

    Article 

    Google Scholar
     

  • Lindsay, Okay. E. et al. Aerosol supply of artificial mRNA to vaginal mucosa results in sturdy expression of broadly neutralizing antibodies towards HIV. Mol. Ther. 28, 805–819 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Poley, M. et al. Nanoparticles accumulate within the feminine reproductive system throughout ovulation affecting most cancers remedy and fertility. ACS Nano 16, 5246–5257 (2022).

    CAS 

    Google Scholar
     

  • DeWeerdt, S. Prenatal gene remedy affords the earliest doable remedy. Nature 564, S6–S8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Palanki, R., Peranteau, W. H. & Mitchell, M. J. Supply applied sciences for in utero gene remedy. Adv. Drug Deliv. Rev. 169, 51–62 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA supply. Sci. Adv. 7, 1028–1041 (2021).

    Article 

    Google Scholar
     

  • Swingle, Okay. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA supply. J. Management. Launch 341, 616–633 (2022).

    CAS 

    Google Scholar
     

  • Ricciardi, A. S. et al. In utero nanoparticle supply for site-specific genome modifying. Nat. Commun. 9, 2481 (2018). This research presents in utero gene modifying of a disease-causing β-thalassemia mutation in foetal mice.

    Article 

    Google Scholar
     

  • Chaudhary, N. et al. Lipid nanoparticle construction and supply route throughout being pregnant dictates mRNA efficiency, immunogenicity, and well being within the mom and offspring. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528720 (2023).

  • Younger, R. E. et al. Lipid nanoparticle composition drives mRNA supply to the placenta. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521490 (2022).

  • Swingle, Okay. L. et al. Ionizable lipid nanoparticles for in vivo mRNA supply to the placenta throughout being pregnant. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lan, Y. et al. Latest improvement of AAV-based gene therapies for internal ear issues. Gene Ther. 27, 329–337 (2020).

    CAS 

    Google Scholar
     

  • Delmaghani, S. & El-Amraoui, A. Interior ear gene therapies take off: present guarantees and future challenges. J. Clin. Med. 9, 2309 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Kempton, J. B. & Brigande, J. V. Gene remedy in mouse fashions of deafness and stability dysfunction. Entrance. Mol. Neurosci. 11, 300 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. Regeneration of cochlear hair cells and listening to restoration by Hes1 modulation with siRNA nanoparticles in grownup guinea pigs. Mol. Ther. 26, 1313–1326 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Remedy of autosomal dominant listening to loss by in vivo supply of genome modifying brokers. Nature 553, 217–221 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jero, J. et al. Cochlear gene supply by an intact spherical window membrane in mouse. Hum. Gene Ther. 12, 539–548 (2001).

    CAS 

    Google Scholar
     

  • Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: advanced tissues that interface with the whole organism. Dev. Cell 18, 884–901 (2010).

    Article 
    CAS 

    Google Scholar
     

  • El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, Okay. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery techniques to stable tumor micromilieu: previous, current, and future views. ACS Nano 12, 10636–10664 (2018).

    CAS 

    Google Scholar
     

  • Hansen, A. E. et al. Positron emission tomography based mostly elucidation of the improved permeability and retention impact in canine with most cancers utilizing copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and remedy efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016). This Overview deeply explores the doable components behind the ineffective tumour-targeting of NPs, uncovering that solely a small fraction of the administered NP dose reaches a stable tumour.

    Article 
    CAS 

    Google Scholar
     

  • Schroeder, A. et al. Treating metastatic most cancers with nanotechnology. Nat. Rev. Most cancers 12, 39–50 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chan, W. C. W. Ideas of nanoparticle supply to stable tumors. BME Entrance. 4, 0016 (2023). This Overview delineates key ideas for designing tumour-targeting NPs, contemplating each macro- and micro-level evaluation of the atmosphere surrounding NPs and their physicochemical attributes.

    Article 
    CAS 

    Google Scholar
     

  • Kingston, B. R. et al. Particular endothelial cells govern nanoparticle entry into stable tumors. ACS Nano 15, 14080–14094 (2021).

    CAS 

    Google Scholar
     

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle supply. Science 377, eabm5551 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Multifunctional oncolytic nanoparticles ship self-replicating IL-12 RNA to eradicate established tumors and prime systemic immunity. Nat. Most cancers 1, 882–893 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hotz, C. et al. Native supply of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication throughout a number of preclinical tumor fashions. Sci. Transl. Med. 13, eabc7804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Biomimetic nanoparticles ship mRNAs encoding costimulatory receptors and improve T cell mediated most cancers immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van Lint, S. et al. Intratumoral supply of TriMix mRNA leads to T-cell activation by cross-presenting dendritic cells. Most cancers Immunol. Res. 4, 146–156 (2016).

    Article 

    Google Scholar
     

  • Oberli, M. A. et al. Lipid nanoparticle assisted mRNA supply for potent most cancers immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS 

    Google Scholar
     

  • Huayamares, S. G. et al. Excessive-throughput screens establish a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Management. Launch 357, 394–403 (2023).

    CAS 

    Google Scholar
     

  • Vetter, V. C. & Wagner, E. Concentrating on nucleic acid-based therapeutics to tumors: challenges and methods for polyplexes. J. Management. Launch 346, 110–135 (2022).

    CAS 

    Google Scholar
     

  • Yong, S. et al. Twin‐focused lipid nanotherapeutic enhance for chemo‐immunotherapy of most cancers. Adv. Mater. 34, 2106350 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kedmi, R. et al. A modular platform for focused RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018). This research developed a modular, ligand-based RNA supply platform that avoids the chemical conjugation of antibodies through the use of linkers that bind to the Fc area, making certain exact antibody orientation on the NP floor.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, Okay., Enoki, T., Kawano, Y., Veraz, M. & Nakai, H. Drawing a high-resolution useful map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5, 3075 (2014).

    Article 

    Google Scholar
     

  • Dahlman, J. E. et al. Barcoded nanoparticles for top throughput in vivo discovery of focused therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017). This work presents the outstanding capabilities of DNA barcoding and deep sequencing in conducting high-throughput screening of NPs, assessing their effectiveness in target-specific gene supply in vivo.

    Article 
    CAS 

    Google Scholar
     

  • Da Silva Sanchez, A. J. et al. Common barcoding predicts in vivo ApoE-independent lipid nanoparticle supply. Nano Lett. 22, 4822–4830 (2022).


    Google Scholar
     

  • Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo supply screening. J. Management. Launch 316, 404–417 (2019).

    CAS 

    Google Scholar
     

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA supply. Nat. Nanotechnol. 17, 871–879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA supply. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Strategies 14, 865–868 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Keenum, M. C. et al. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 297, 122097 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rao, N., Clark, S. & Habern, O. Bridging genomics and tissue pathology: 10x Genomics explores new frontiers with the Visium Spatial Gene Expression Answer. Genet. Eng. Biotechnol. Information 40, 50–51 (2020).

    Article 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene remedy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shao, D. et al. HBFP: a brand new repository for human physique fluid proteome. Database 2021, baab065 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A information to machine studying for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine studying algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. AGILE platform: a deep learning-powered method to speed up LNP improvement for mRNA supply. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543345 (2023). This work implements synthetic intelligence in ionizable lipid design for intramuscular mRNA supply.

  • Gong, D. et al. Machine studying guided construction operate predictions allow in silico nanoparticle screening for polymeric gene supply. Acta Biomater. 154, 349–358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamankurt, G. et al. Exploration of the nanomedicine-design area with high-throughput screening and machine studying. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lazarovits, J. et al. Supervised studying and mass spectrometry predicts the in vivo destiny of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    CAS 

    Google Scholar
     

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar
     

  • Repecka, D. et al. Increasing useful protein sequence areas utilizing generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article 

    Google Scholar
     

  • De Backer, L., Cerrada, A., Pérez-Gil, J., De Smedt, S. C. & Raemdonck, Okay. Bio-inspired supplies in drug supply: exploring the position of pulmonary surfactant in siRNA inhalation remedy. J. Management. Launch 220, 642–650 (2015).


    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments