Thursday, December 7, 2023
HomeNanotechnologyMesenchymal stem cells-derived extracellular vesicles defend in opposition to oxidative stress-induced xenogeneic...

Mesenchymal stem cells-derived extracellular vesicles defend in opposition to oxidative stress-induced xenogeneic organic root harm through adaptive regulation of the PI3K/Akt/NRF2 pathway | Journal of Nanobiotechnology


  • Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based supplies for regenerative medication. Nat Rev Mater. 2018;3:159–73.

    Article 
    CAS 

    Google Scholar
     

  • Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system. A mutually dependent relationship. Science. 2023;379:eabp8964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24:495–516.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Yang X, Luo X, Chen G, Chen J, Huo F, Zhu Z, Tian Y, Guo W, Tian W. DFCs/TDM primarily based synthetic bio-root to acquire long-term practical root regeneration in non-human primate. Chem Eng J. 2023;451:138738.

    Article 
    CAS 

    Google Scholar
     

  • Tajima Okay, Yagi H, Morisaku T, Nishi Okay, Kushige H, Kojima H, Higashi H, Kuroda Okay, Kitago M, Adachi S, et al. An organ-derived extracellular matrix triggers in situ kidney regeneration in a preclinical mannequin. NPJ Regen Med. 2022;7:18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maelene LW, Janelle LW, Natalia V, Leigh GG. In vivo xenogeneic scaffold destiny is decided by residual antigenicity and extracellular matrix preservation. Biomaterials. 2016. https://doi.org/10.1016/j.biomaterials.2016.03.024.

    Article 

    Google Scholar
     

  • Li H, Ma B, Yang H, Qiao J, Tian W, Yu R. Xenogeneic dentin matrix as a scaffold for biomineralization and induced odontogenesis. Biomed Mater. 2021;16: 045020.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Solar J, Li J, Yang H, Luo X, Chen J, Xie L, Huo F, Zhu T, Guo W, Tian W. Xenogeneic bio-root prompts the constructive course of characterised by macrophage phenotype polarization in rodents and nonhuman primates. Adv Healthc Mater. 2017;6:1601112.

    Article 

    Google Scholar
     

  • Li H, Solar J, Yang H, Han X, Luo X, Liao L, Yang B, Zhu T, Huo F, Guo W, Tian W. Recruited CD68(+)CD206(+) macrophages orchestrate graft immune tolerance to immediate xenogeneic-dentin matrix-based tooth root regeneration. Bioact Mater. 2021;6:1051–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Chen G, Li J, Zou Q, Xie D, Chen Y, Wang H, Zheng X, Lengthy J, Tang W, et al. Tooth root regeneration utilizing dental follicle cell sheets together with a dentin matrix – primarily based scaffold. Biomaterials. 2012;33:2449–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar J, Li J, Li H, Yang H, Chen J, Yang B, Huo F, Guo W, Tian W. tBHQ suppresses osteoclastic resorption in xenogeneic-treated dentin matrix-based scaffolds. Adv Healthc Mater. 2017;6:1601112.

    Article 

    Google Scholar
     

  • Lan T, Chen J, Zhang J, Huo F, Han X, Zhang Z, Xu Y, Huang Y, Liao L, Xie L, et al. Xenoextracellular matrix-rosiglitazone complex-mediated immune evasion promotes xenogenic bioengineered root regeneration by altering M1/M2 macrophage polarization. Biomaterials. 2021;276: 121066.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rieder E, Steinacher-Nigisch A, Weigel G. Human immune-cell response in direction of numerous xenogeneic and allogeneic decellularized biomaterials. Int J Surg. 2016;36:347–51.

    Article 
    PubMed 

    Google Scholar
     

  • Bădilă AE, Rădulescu DM, Ilie A, Niculescu A-G, Grumezescu AM, Rădulescu AR. Bone regeneration and oxidative stress: an up to date overview. Antioxidants. 2022. https://doi.org/10.3390/antiox11020318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson E, Mind JG, Ali S, Kirby JA. Oxidative-stress-induced biosignatures: a predictor of allograft dysfunction? Lancet. 2016;387:S100.

    Article 

    Google Scholar
     

  • Mouthuy PA, Snelling SJB, Dakin SG, Milkovic L, Gasparovic AC, Carr AJ, Zarkovic N. Biocompatibility of implantable supplies: an oxidative stress viewpoint. Biomaterials. 2016;109:55–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiekh PA, Singh A, Kumar A. Engineering bioinspired antioxidant supplies selling cardiomyocyte performance and maturation for tissue engineering software. ACS Appl Mater Interfaces. 2018;10:3260–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound therapeutic. Biomaterials. 2020;249: 120020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Okay, Torre E, Bari A, Taccardi N, Cassinelli C, Morra M, Fiorilli S, Vitale-Brovarone C, Iviglia G, Boccaccini AR. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic actions. Mater At this time Bio. 2020;5: 100041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and instructions in finding out cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369–82.

    Article 
    PubMed 

    Google Scholar
     

  • Cocozza F, Grisard E, Martin-Jaular L, Mathieu M, Thery C. SnapShot: extracellular vesicles. Cell. 2020;182:262-262 e261.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Li J, Xue X, Yin Z, Xu Okay, Su J. Engineered extracellular vesicles for bone remedy. Nano At this time. 2022;44: 101487.

    Article 
    CAS 

    Google Scholar
     

  • Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A, Bähr M, Doeppner TR. Adipose-derived mesenchymal stem cells scale back autophagy in stroke mice by extracellular vesicle switch of miR-25. J Extracell Vesicles. 2020. https://doi.org/10.1002/jev2.12024.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney irritation. Kidney Int. 2017;92:114–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Liu T, Track Okay, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a greater stem cell than BMSC. Cell Res. 2008;18:S165–S165.

    Article 

    Google Scholar
     

  • Xiao X, Xu M, Yu H, Wang L, Li X, Rak J, Wang S, Zhao RC. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells through regulation of miR-146a/Src. Sign Transduct Goal Ther. 2021;6:354.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Zhai Z, Ying H, Lu L, Zhang J, Zeng Y. Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protecting results on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis. J Nanobiotechnology. 2022;20:123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao J, Zheng J, Cai J, Zeng Okay, Zhou C, Zhang J, Li S, Li H, Chen L, He L, et al. Extracellular vesicles derived from human umbilical wire mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion harm by suppressing oxidative stress and neutrophil inflammatory response. FASEB J. 2019;33:1695–710.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan BKY, Elmasry M, Forootan SS, Russomanno G, Bunday TM, Zhang F, Brillant N, Starkey Lewis PJ, Aird R, Ricci E, et al. Pharmacological activation of Nrf2 enhances practical liver regeneration. Hepatology. 2021;74:973–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komatsu M, Kurokawa H, Waguri S, Taguchi Okay, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al. The selective autophagy substrate p62 prompts the stress responsive transcription issue Nrf2 by way of inactivation of Keap1. Nat Cell Biol. 2010;12:213–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen Z, Hou W, Wu W, Zhao Y, Dong X, Bai X, Peng L, Track L. 6′-O-Galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress through PI3K/Akt/Nrf2 activation. Oxid Med Cell Longev. 2018;2018:8678267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Tang Z, Chu P, Track Y, Yang Y, Solar B, Niu M, Qaed E, Shopit A, Han G, et al. Neuroprotective impact of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of twin PI3K/Akt and Nrf2/HO-1 pathways. Free Radic Biol Med. 2018;120:228–38.

    Article 
    PubMed 

    Google Scholar
     

  • Lai TT, Yang CM, Yang CH. Astaxanthin protects retinal photoreceptor cells in opposition to excessive glucose-induced oxidative stress by induction of antioxidant enzymes through the PI3K/Akt/Nrf2 pathway. Antioxidants (Basel). 2020;9:729.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ying S, Tan M, Feng G, Kuang Y, Chen D, Li J, Track J. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics. 2020;10:9789–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Yu H, Solar M, Yang P, Hu X, Ao Y, Cheng J. The tissue origin impact of extracellular vesicles on cartilage and bone regeneration. Acta Biomater. 2021;125:253–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turovsky EA, Golovicheva VV, Varlamova EG, Danilina TI, Goryunov KV, Shevtsova YA, Pevzner IB, Zorova LD, Babenko VA, Evtushenko EA, et al. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations. Int J Biol Sci. 2022;18:5345–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang Y, Cheng M, Li M, Cui J, Huang J, Zhang C, Si J, Lin Okay, Yu H. Small extracellular vesicles derived from hypoxic mesenchymal stem cells promote vascularized bone regeneration by way of the miR-210-3p/EFNA3/PI3K pathway. Acta Biomater. 2022;150:413–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandham S, Su X, Wooden J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Applied sciences and standardization in analysis on extracellular vesicles. Tendencies Biotechnol. 2020;38:1066–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for extracellular vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7:1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanovski S, Bartold PM, Huang YS. The function of international physique response in peri-implantitis: what’s the proof? Periodontol. 2000;2022(90):176–85.


    Google Scholar
     

  • Wang X. Tempering drive with mercy: An revolutionary peri-implant ligament with mixed osteointegration and energy-dissipation. Nano Res. 2021;15:4466–7.

    Article 

    Google Scholar
     

  • Luo X, Yang B, Sheng L, Chen J, Li H, Xie L, Chen G, Yu M, Guo W, Tian W. CAD primarily based design sensitivity evaluation and form optimization of scaffolds for bio-root regeneration in swine. Biomaterials. 2015;57:59–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalgliesh AJ, Parvizi M, Lopera-Higuita M, Shklover J, Griffiths LG. Graft-specific immune tolerance is decided by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Biomater. 2018;79:253–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rijal G, Kim BS, Pati F, Ha DH, Kim SW, Cho DW. Sturdy tissue progress and angiogenesis in large-sized scaffold by lowering H(2)O(2)-mediated oxidative stress. Biofabrication. 2017;9: 015013.

    Article 
    PubMed 

    Google Scholar
     

  • Bayarsaikhan G, Bayarsaikhan D, Lee J, Lee B. Concentrating on scavenger receptors in inflammatory issues and oxidative stress. Antioxidants (Basel). 2022;11:936.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birch-Machin MA, Bowman A. Oxidative stress and ageing. Br J Dermatol. 2016;175(Suppl 2):26–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debelec-Butuner B, Bostanci A, Heiserich L, Eberle C, Ozcan F, Aslan M, Roggenbuck D, Korkmaz KS. Automated cell-based quantitation of 8-OHdG injury. Strategies Mol Biol. 2016;1516:299–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai L, Wang Y, Zhou G, Chen T, Track Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell dying through suppression of mitochondrial oxidative stress ends in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;48:1688–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiang M, Xu Y, Lu Y, He Y, Han C, Liu Y, He R. Autofluorescence of MDA-modified proteins as an in vitro and in vivo probe in oxidative stress evaluation. Protein Cell. 2014;5:484–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodega G, Alique M, Puebla L, Carracedo J, Ramírez RM. Microvesicles: ROS scavengers and ROS producers. J Extracell Vesicles. 2019. https://doi.org/10.1080/20013078.2019.1626654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo J, Lee J, Lee S, Kim WJ. Polymeric antioxidant supplies for remedy of inflammatory issues. Adv Therap. 2021. https://doi.org/10.1002/adtp.202000270.

    Article 

    Google Scholar
     

  • Ghorbani M, Derakhshankhah H, Jafari S, Salatin S, Dehghanian M, Falahati M, Ansari A. Nanozyme antioxidants as rising alternate options for pure antioxidants: achievements and challenges in perspective. Nano At this time. 2019. https://doi.org/10.1016/j.nantod.2019.100775.

    Article 

    Google Scholar
     

  • Xian, Xiao Meiqian, Xu Hongliang, Yu Liping, Wang Xiaoxia, Li Janusz, Rak Shihua, Wang Robert Chunhua, Zhao (2021) Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells through regulation of miR-146a/Src Summary Sign Transduction and Focused Remedy 6(1) 10.1038/s41392-021-00765-3

  • Wang T, Jian Z, Baskys A, Yang J, Li J, Guo H, Hei Y, Xian P, He Z, Li Z, et al. MSC-derived exosomes defend in opposition to oxidative stress-induced pores and skin harm through adaptive regulation of the NRF2 protection system. Biomaterials. 2020;257: 120264.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Gaetano A, Gibellini L, Zanini G, Nasi M, Cossarizza A, Pinti M. Mitophagy and oxidative stress: the function of ageing. Antioxidants (Basel). 2021;10:794.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng CX, Sui BD, Qiu XY, Hu CH, Jin Y. Mitochondrial regulation of stem cells in bone homeostasis. Tendencies Mol Med. 2020;26:89–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pieles O, Horing M, Adel S, Reichert TE, Liebisch G, Morsczeck C. Power metabolism and lipidome are extremely regulated throughout osteogenic differentiation of dental follicle cells. Stem Cells Int. 2022;2022:3674931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y. Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion harm by inhibition of mitochondrial fission by way of miR-30. Stem Cells Int. 2016;2016:2093940.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao H, Cheng Y, Gao H, Zhuang J, Zhang W, Bian Q, Wang F, Du Y, Li Z, Kong D, et al. In vivo monitoring of mesenchymal stem cell-derived extracellular vesicles bettering mitochondrial operate in renal ischemia–reperfusion harm. ACS Nano. 2020;14:4014–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, Gong M, Yuan Y, Chen Y, Cheng J, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial injury and irritation by stabilizing mitochondrial DNA. ACS Nano. 2021;15:1519–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kneeshaw S, Keyani R, Delorme-Hinoux V, Imrie L, Loake GJ, Le Bihan T, Reichheld JP, Spoel SH. Nucleoredoxin guards in opposition to oxidative stress by defending antioxidant enzymes. Proc Natl Acad Sci USA. 2017;114:8414–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomandlova M, Parenica J, Lokaj P, Ondrus T, Kala P, Miklikova M, Helanova Okay, Helan M, Malaska J, Benesova Okay, et al. Prognostic worth of oxidative stress in sufferers with acute myocardial infarction difficult by cardiogenic shock: a potential cohort research. Free Radic Biol Med. 2021;174:66–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dossena S, Marino A. Mobile oxidative stress. Antioxidants (Basel). 2021;10:399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Bhandar B, Kavdia M. Interplay of ROS and RNS with GSH and GSH/GPX techniques. FASEB J. 2015;29:636–7.


    Google Scholar
     

  • Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes improve periodontal ligament cell features and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerqueni G, Scalzone A, Licini C, Gentile P, Mattioli-Belmonte M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. Mater Sci Eng C. 2021. https://doi.org/10.1016/j.msec.2021.112433.

    Article 

    Google Scholar
     

  • Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in bone reworking: a regulator of oxidative stress. Entrance Endocrinol (Lausanne). 2022;13: 898634.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhang W, Dai J, Wang X, Shen SG. Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells through direct upregulation of Osteocalcin and Alp. Int J Oral Sci. 2019;11:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y. Runx2 regulates mouse tooth root growth through activation of WNT inhibitor NOTUM. J Bone Miner Res. 2020;35:2252–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Homosexual I, MacDougall M. Runx2, osx, and dspp in tooth growth. J Dent Res. 2009;88:904–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in illness: timing is all the pieces. Annu Rev Pharmacol Toxicol. 2019;59:555–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Hu B, Zang F, Wang J, Zhang X, Chen H. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells through a Keap1/Nrf2/p62 suggestions loop to guard intervertebral disc from degeneration. Cell Dying Dis. 2019;10:510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong J, Zhang L, Ruan B, Lv Z, Wang H, Wang Y, Jiang Q, Cao W. NRF2 is a crucial regulator and therapeutic goal of steel implant particle-incurred bone injury. Biomaterials. 2022;288: 121742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei L, Chen Y, Chen P, Chen H, He S, Jin C, Wang Y, Hu Z, Li W, Jin L, et al. Fibroblast progress issue 7 alleviates myocardial infarction by bettering oxidative stress through PI3Kalpha/AKT-mediated regulation of Nrf2 and HXK2. Redox Biol. 2022;56: 102468.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang Y, Wu H, Wang X, He J, He S, Yin Y. Resveratrol attenuates oxidative stress-induced intestinal barrier harm by way of PI3K/Akt-mediated Nrf2 signaling pathway. Oxid Med Cell Longev. 2019;2019:7591840.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic focusing on of the NRF2 and KEAP1 partnership in persistent ailments. Nat Rev Drug Discov. 2019;18:295–317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu W, Liang JW, Liao S, Zhao ZD, Wang YX, Mao XF, Hao SW, Wang YF, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells harm and enhances bone restore in postradiation femoral defect mannequin. Mil Med Res. 2021;8:61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funk M, Ferrarelli LK. Coordinated by oxidative stress. Science. 2020;368:278–80.


    Google Scholar
     

  • Chiu AV, Saigh MA, McCulloch CA, Glogauer M. The function of NrF2 within the regulation of periodontal well being and illness. J Dent Res. 2017;96:975–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SK, Lee CY, Kook YA, Lee SK, Kim EC. Mechanical stress promotes odontoblastic differentiation through the heme oxygenase-1 pathway in human dental pulp cell line. Life Sci. 2010;86:107–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar YX, Xu AH, Yang Y, Li J. Position of Nrf2 in bone metabolism. J Biomed Sci. 2015;22:101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments