Rogers, C. et al. A common 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).
Bai, B. et al. Microcomb-based built-in photonic processing unit. Nat. Commun. 14, 66 (2023).
Liu, J. et al. Analysis progress in optical neural networks: principle, functions and developments. PhotoniX 2, 5 (2021).
Zuo, Y. et al. All-optical neural community with nonlinear activation capabilities. Optica 6, 1132–1137 (2019).
Hazan, A. et al. MXene-nanoflakes-enabled all-optical nonlinear activation operate for on-chip photonic deep neural networks. Adv. Mater. 35, 2210216 (2023).
Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).
Qian, H. et al. Massive optical nonlinearity enabled by coupled metallic quantum wells. Gentle Sci. Appl. 8, 13 (2019).
Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimum entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).
Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from seen to microwave wavelengths. Nat. Photon. 15, 493–498 (2021).
Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).
Music, Y. et al. Nonlinear few-layer antimonene-based all-optical sign processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Choose. Mater. 6, 1701287 (2018).
Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative research of second-harmonic technology from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited within the near-infrared spectral vary. ACS Photon. 2, 1584–1591 (2015).
Rosencher, E. et al. Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996).
Jang, J., Kang, Y., Cha, D., Bae, J. & Lee, S. Skinny-film optical gadgets based mostly on clear conducting oxides: bodily mechanisms and functions. Crystals https://doi.org/10.3390/cryst9040192 (2019).
Jin, S. et al. Tuning the properties of clear oxide conductors. Dopant ion measurement and digital construction results on CdO-based clear conducting oxides. Ga- and In-doped CdO skinny movies grown by MOCVD. Chem. Mater. 20, 220–230 (2008).
Ma, Z., Li, Z., Liu, Ok., Ye, C. & Sorger, V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophoton. 4, 198–213 (2015).
Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Pressure engineering of 2D semiconductors and graphene: from pressure fields to band-structure tuning and photonic functions. Gentle Sci. Appl. 9, 190 (2020).
Dong, Z. et al. Second-harmonic technology from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. https://doi.org/10.1021/acs.nanolett.5b02109 (2015).
Li, S.-Q. et al. Dramatically enhanced second harmonic technology in Janus group-III chalcogenide monolayers. Adv. Choose. Mater. 10, 2200076 (2022).
Alam, M., De Leon, I. & Boyd, R. Massive optical nonlinearity of indium tin oxide in its epsilon-near-zero area. Science https://doi.org/10.1126/science.aae0330 (2016).
Butet, J., Brevet, P.-F. & Martin, O. J. F. Optical second harmonic technology in plasmonic nanostructures: from basic ideas to superior functions. ACS Nano 9, 10545–10562 (2015).
De Liberato, S. Gentle-matter decoupling within the deep sturdy coupling regime: the breakdown of the Purcell impact. Phys. Rev. Lett. 112, 016401 (2014).
Datta, R. S. et al. Versatile two-dimensional indium tin oxide fabricated utilizing a liquid steel printing approach. Nat. Electron. 3, 51–58 (2020).
Li, Q. et al. Gasoline-mediated liquid steel printing towards large-scale 2D semiconductors and ultraviolet photodetector. npj 2D Mater. Appl. https://doi.org/10.1038/s41699-021-00219-y (2021).
Jannat, A. et al. Printable single-unit-cell-thick clear zinc-doped indium oxides with environment friendly electron transport properties. ACS Nano 15, 4045–4053 (2021).
Lin, Ok.-Q. et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 12, 1553 (2021).
Eckardt, R. & Reintjes, J. Part matching limitations of excessive effectivity second harmonic technology. IEEE J. Quantum Electron. 20, 1178–1187 (1984).
Lahon, S., Jha, P. Ok. & Mohan, M. Nonlinear interband and intersubband transitions in quantum dots for multiphoton photodetectors. J. Appl. Phys. 109, 054311 (2011).
Aukarasereenont, P. et al. Liquid metals: a perfect platform for the synthesis of two-dimensional supplies. Chem. Soc. Rev. https://doi.org/10.1039/d1cs01166a (2022).
Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035–1041 (2018).
Boyd, R. W. Nonlinear Optics third edn (Educational Press, 2008).
Bennett, H. S. Heavy doping results on bandgaps, efficient intrinsic service concentrations and service mobilities and lifetimes. Stable-State Electron. 28, 193–200 (1985).
Shen, Y., Lou, Y., Wang, Z. & Xu, X. In-situ development and characterization of indium tin oxide nanocrystal rods. Coatings https://doi.org/10.3390/coatings7120212 (2017).
Yu, W. J. et al. Unusually environment friendly photocurrent extraction in monolayer van der Waals heterostructure by tunnelling by means of discretized boundaries. Nat. Commun. 7, 13278 (2016).
Guo, X. et al. Parametric down-conversion photon-pair supply on a nanophotonic chip. Gentle Sci. Appl. 6, e16249 (2017).
Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).
Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electrical field-induced second-order nonlinear optical results in silicon waveguides. Nat. Photon. 11, 200–206 (2017).
Shree, S. et al. Interlayer exciton mediated second harmonic technology in bilayer MoS2. Nat. Commun. 12, 6894 (2021).
Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev. 10, 569–587 (2016).
Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D supplies for optical modulation: challenges and alternatives. Adv. Mater. 29, 1606128 (2017).
Khan, A. R. et al. Optical harmonic technology in 2D supplies. Adv. Funct. Mater. 32, 2105259 (2022).
Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).
Wu, Z.-J. et al. Nonlinear plasmonic frequency conversion by means of quasiphase matching. Phys. Rev. B https://doi.org/10.1103/PhysRevB.82.155107 (2010).
Riemensberger, J. et al. A photonic built-in continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).
Setzpfandt, F. et al. Tunable technology of entangled photons in a nonlinear directional coupler. Laser Photon. Rev. 10, 131–136 (2016).
Yin, P. et al. 2D supplies for nonlinear photonics and electro-optical functions. Adv. Mater. Interfaces 8, 2100367 (2021).
Li, Y. et al. Large two-photon absorption in monolayer MoS2. Laser Photon. Rev. 9, 427–434 (2015).
Erhart, P., Klein, A., Egdell, R. G. & Albe, Ok. Band construction of indium oxide: oblique versus direct band hole. Phys. Rev. B 75, 153205 (2007).
Lin, J.-J. & Li, Z.-Q. Digital conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. Condens. Matter 26, 343201 (2014).
Varley, J. B. & Schleife, A. Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3. Semicond. Sci. Technol. https://doi.org/10.1088/0268-1242/30/2/024010 (2015).
Tang, Y. L., Huang, C. H. & Nomura, Ok. Vacuum-free liquid-metal-printed 2D indium-tin oxide thin-film transistor for oxide inverters. ACS Nano 16, 3280–3289 (2022).
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).