Friday, January 27, 2023
HomeNanotechnologyMachine studying for nanoplasmonics | Nature Nanotechnology

Machine studying for nanoplasmonics | Nature Nanotechnology


  • Mayer, Ok. M. & Hafner, J. H. Localized floor plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Langer, J. et al. Current and way forward for surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Willets, Ok. A., Wilson, A. J., Sundaresan, V. & Joshi, P. B. Tremendous-resolution imaging and plasmonics. Chem. Rev. 117, 7538–7582 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced scorching provider science and expertise. Nat. Nanotechnol. 10, 25–34 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gu, M. et al. Nanoplasmonics: a frontier of photovoltaic photo voltaic cells. Nanophotonics 1, 235–248 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Gentle Sci. Appl 9, 90 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abadeer, N. S. & Murphy, C. J. Current progress in most cancers thermal remedy utilizing gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xavier, J., Yu, D. S., Jones, C., Zossimova, E. & Vollmer, F. Quantum nanophotonic and nanoplasmonic sensing: in the direction of quantum optical bioscience laboratories on chip. Nanophotonics 10, 1387–1435 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z.-Ok. et al. Quantum plasmonics get utilized. Prog. Quantum Electron. 65, 1–20 (2019).

    Article 

    Google Scholar
     

  • Henry, A.-I. et al. Correlated construction and optical property research of plasmonic nanoparticles. J. Phys. Chem. C 115, 9291–9305 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Carleo, G. et al. Machine studying and the bodily sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Butler, Ok. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine studying for molecular and supplies science. Nature 559, 547–555 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Brown, Ok. A., Brittman, S., Maccaferri, N., Jariwala, D. & Celano, U. Machine studying in nanoscience: huge knowledge at small scales. Nano Lett. 20, 2–10 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vahidzadeh, E. & Shankar, Ok. Synthetic neural network-based prediction of the optical properties of spherical core–shell plasmonic metastructures. Nanomaterials 11, 633 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Malkiel, I. et al. Plasmonic nanostructure design and characterization by way of deep studying. Gentle Sci. Appl. 7, 60 (2018).

    Article 

    Google Scholar
     

  • Kim, W. et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal ailments in ladies. ACS Nano 12, 7100–7108 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients close to cells. ACS Nano 13, 1403–1411 (2019).

    CAS 

    Google Scholar
     

  • Shi, H. et al. Organising a surface-enhanced Raman scattering database for artificial-intelligence-based label-free discrimination of tumor suppressor genes. Anal. Chem. 90, 14216–14221 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tao, H. et al. Nanoparticle synthesis assisted by machine studying. Nat. Rev. Mater. 6, 701–716 (2021).

    Article 

    Google Scholar
     

  • Yen, S.-C., Chen, Y.-L. & Su, Y.-H. Supplies genome evolution of floor plasmon resonance traits of Au nanoparticles embellished ZnO nanorods. APL Mater. 8, 091109 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Leong, Y. X. et al. Floor-enhanced Raman scattering (SERS) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 21, 2642–2649 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Macias, G. et al. Whisky tasting utilizing a bimetallic nanoplasmonic tongue. Nanoscale 11, 15216–15223 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Environment friendly spectrum prediction and inverse design for plasmonic waveguide techniques primarily based on synthetic neural networks. Photon. Res. 7, 368–380 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, M. D. & Di Vece, M. Utilizing a neural community to enhance the optical absorption in halide perovskite layers containing core-shells silver nanoparticles. Nanomaterials 9, 437 (2019).

    Article 
    CAS 

    Google Scholar
     

  • He, J., He, C., Zheng, C., Wang, Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design utilizing machine studying. Nanoscale 11, 17444–17459 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, N. B. & Keshavarz Hedayati, M. A deep studying method to the ahead prediction and inverse design of plasmonic metasurface structural coloration. Appl. Phys. Lett. 119, 061101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M., Wang, T., Cai, P. & Chen, X. Nanomaterials discovery and design by machine studying. Small Strategies 3, 1900025 (2019).

    Article 

    Google Scholar
     

  • Kelly, Ok. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of steel nanoparticles: the affect of measurement, form, and dielectric atmosphere. J. Phys. Chem. B 107, 668–677 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Shu, J., Gu, W. & Gao, L. Deep neural community for plasmonic sensor modeling. Choose. Mater. Specific 9, 3857–3862 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pashkov, D. M. et al. Quantitative evaluation of the UV–vis spectra for gold nanoparticles powered by supervised machine studying. J. Phys. Chem. C 125, 8656–8666 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arzola-Flores, J. A. & Gonzalez, A. L. Machine studying for predicting the floor plasmon resonance of good and concave gold nanocubes. J. Phys. Chem. C 124, 25447–25454 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine studying of scientific articles by extracting, structuring, and visualizing data. J. Chem. Inf. Mannequin. 60, 2876–2887 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ashalley, E. et al. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photon. Res. 8, 1213–1225 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sajedian, I., Badloe, T. & Rho, J. Optimisation of color technology from dielectric nanostructures utilizing reinforcement studying. Choose. Specific 27, 5874–5883 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Tan, Y., Khoram, E. & Yu, Z. Coaching deep neural networks for the inverse design of nanophotonic buildings. ACS Photonics 5, 1365–1369 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kasani, S., Curtin, Ok. & Wu, N. A assessment of 2D and 3D plasmonic nanostructure array patterns: fabrication, mild administration and sensing purposes. Nanophotonics 8, 2065–2089 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Glotzer, S. C. & Solomon, M. J. Anisotropy of constructing blocks and their meeting into advanced buildings. Nat. Mater. 6, 557–562 (2007).

    Article 

    Google Scholar
     

  • MacFarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tao, H. C. et al. Nanoparticle synthesis assisted by machine studying. Nat. Rev. Mater. 6, 701–716 (2021).

    Article 

    Google Scholar
     

  • Ringe, E., Van Duyne, R. P. & Marks, L. D. Kinetic and thermodynamic modified Wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859–15870 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Salley, D. et al. A nanomaterials discovery robotic for the Darwinian evolution of form programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pinho, B. & Torrente-Murciano, L. Dial-a-particle: exact manufacturing of plasmonic nanoparticles primarily based on early progress data – redefining automation for gradual materials synthesis. Adv. Vitality Mater. 11, 2100918 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated improvement of colloidal nanomaterials enabled by modular microfluidic reactors: towards autonomous robotic experimentation. Adv. Mater. 33, 2004495 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Coley, C. W., Inexperienced, W. H. & Jensen, Ok. F. Machine studying in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Copp, S. M., Bogdanov, P., Debord, M., Singh, A. & Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine studying. Adv. Mater. 26, 5839–5845 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Copp, S. M. et al. Fluorescence coloration by data-driven design of genomic silver clusters. ACS Nano 12, 8240–8247 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Adorf, C. S., Moore, T. C., Melle, Y. J. U. & Glotzer, S. C. Evaluation of self-assembly pathways with unsupervised machine studying algorithms. J. Phys. Chem. B 124, 69–78 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dijkstra, M. & Luijten, E. From predictive modelling to machine studying and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nette, J., Howes, P. D. & deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: quick, environment friendly, and data-rich. Adv. Mater. Technol. 5, 2000060 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C.-C., Pan, F. & Su, Y.-H. Floor plasmon resonance of gold nano-sea-urchins managed by machine-learning-based regulation in seed-mediated progress. Adv. Photon. Res. 2, 2170031 (2021).

    Article 

    Google Scholar
     

  • Mekki-Berrada, F. et al. Two-step machine studying permits optimized nanoparticle synthesis. npj Comput. Mater. 7, 55 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dong, B. et al. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel technique, and fast analysis by way of machine studying. Ultrason. Sonochem. 73, 105485 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fernandes, D. L. A. et al. Inexperienced microfluidic synthesis of monodisperse silver nanoparticles by way of genetic algorithm optimization. RSC Adv. 6, 95693–95697 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fukada, Ok. & Seyama, M. Microfluidic units managed by machine studying with failure experiments. Anal. Chem. 94, 7060–7065 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moen, E. et al. Deep studying for mobile picture evaluation. Nat. Strategies 16, 1233–1246 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hopper, E. R. et al. Dimension management within the colloidal synthesis of plasmonic magnesium nanoparticles. J. Phys. Chem. C 126, 563–577 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Woehrle, G. H., Hutchinson, J. E., Ozkar, S. & Finke, R. G. Evaluation of nanoparticle transmission electron microscopy knowledge utilizing a public- area image-processing program, picture. Turk. J. Chem. 30, 1–13 (2006).

    CAS 

    Google Scholar
     

  • Wang, X. et al. Autodetect-mNP: an unsupervised machine studying algorithm for automated evaluation of transmission electron microscope photos of steel nanoparticles. JACS Au 1, 316–327 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, B. et al. Statistical characterization of the morphologies of nanoparticles by machine studying primarily based electron microscopy picture evaluation. ACS Nano 14, 17125–17133 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. et al. Deep studying evaluation of polaritonic wave photos. ACS Nano 15, 18182–18191 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine studying to disclose nanoparticle dynamics from liquid-phase TEM movies. ACS Cent. Sci. 6, 1421–1430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y., Li, C., Zhou, H. & Wang, G. Growing noise-resistant three-dimensional single particle monitoring utilizing deep neural networks. Anal. Chem. 90, 10748–10757 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Moon, G., Son, T., Lee, H. & Kim, D. Deep studying method for enhanced detection of floor plasmon scattering. Anal. Chem. 91, 9538–9545 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. P., Li, Q., Luo, J. B., Huang, C. Z. & Zhou, J. Weak response scatterometry of plasmonic resonance mild scattering with machine studying. Anal. Chem. 93, 12131–12138 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horgan, C. C. et al. Excessive-throughput molecular imaging by way of deep-learning-enabled Raman spectroscopy. Anal. Chem. 93, 15850–15860 (2021).

    Article 
    CAS 

    Google Scholar
     

  • García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article 

    Google Scholar
     

  • Nelayah, J. et al. Mapping floor plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Collins, S. M. & Midgley, P. A. Progress and alternatives in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nicoletti, O. et al. Three-dimensional imaging of localized floor plasmon resonances of steel nanoparticles. Nature 502, 80–84 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dobigeon, N. & Brun, N. Spectral combination evaluation of EELS spectrum-images. Ultramicroscopy 120, 25–34 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Altmann, Y., McLaughlin, S. & Hero, A. Strong linear spectral unmixing utilizing anomaly detection. IEEE Trans. Comput. Imaging 1, 74–85 (2015).

    Article 

    Google Scholar
     

  • Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding data utilizing multivariate evaluation of electron energy-loss spectrum photos. Ultramicroscopy 106, 1024–1032 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kalinin, S. V. et al. Separating bodily distinct mechanisms in advanced infrared plasmonic nanostructures by way of machine studying enhanced electron power loss spectroscopy. Adv. Choose. Mater. 9, 2001808 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic steel nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, S. et al. Sizzling-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored on the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    Article 

    Google Scholar
     

  • Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for environment friendly conversion of photo voltaic to chemical power. Nat. Mater. 10, 911–921 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine studying for accelerated discovery of photo voltaic photocatalysts. ACS Catal. 9, 11774–11787 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martirez, J. M. P., Bao, J. L. & Carter, E. A. First-principles insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72, 99–119 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rück, M., Garlyyev, B., Mayr, F., Bandarenka, A. S. & Gagliardi, A. Oxygen discount actions of strained platinum core–shell electrocatalysts predicted by machine studying. J. Phys. Chem. Lett. 11, 1773–1780 (2020).

    Article 

    Google Scholar
     

  • Chen, C. & Li, S. Z. Valence electron density-dependent pseudopermittivity for nonlocal results in optical properties of metallic nanoparticles. ACS Photonics 5, 2295–2304 (2018).

    Article 

    Google Scholar
     

  • Hu, W. et al. Machine studying protocol for surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 6026–6031 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chu, W., Saidi, W. A. & Prezhdo, O. V. Lengthy-lived scorching electron in a metallic particle for plasmonics and catalysis: ab initio nonadiabatic molecular dynamics with machine studying. ACS Nano 14, 10608–10615 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Solar, B., Fernandez, M. & Barnard, A. S. Machine studying for silver nanoparticle electron switch property prediction. J. Chem. Inf. Mannequin. 57, 2413–2423 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nesfchi, M. M. et al. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the method by synthetic intelligence methods. Mater. Sci. Semicond. Course of. 122, 105465 (2021).

    Article 

    Google Scholar
     

  • Mikolajczyk, A. et al. A chemoinformatics method for the characterization of hybrid nanomaterials: safer and environment friendly design perspective. Nanoscale 11, 11808–11818 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis results in merchandise recognized from e-beam and x-ray-induced floor chemistry. Nano Lett. 18, 6740–6749 (2018).

    Article 

    Google Scholar
     

  • Domulevicz, L., Jeong, H., Paul, N. Ok., Gomez-Diaz, J. S. & Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem. Int. Ed. 60, 16436–16441 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, C. et al. Deep studying on picture denoising: an summary. Neural Netw. 131, 251–275 (2020).

    Article 

    Google Scholar
     

  • Adir, O. et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv. Mater. 32, 1901989 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine studying. ACS Sens. 5, 3346–3364 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Synthetic intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Masson, J. F. Floor plasmon resonance medical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gomes, J. C. M., Souza, L. C. & Oliveira, L. C. SmartSPR sensor: machine studying approaches to create clever floor plasmon primarily based sensors. Biosens. Bioelectron. 172, 112760 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thadson, Ok., Visitsattapongse, S. & Pechprasarn, S. Deep learning-based single-shot section retrieval algorithm for floor plasmon resonance microscope primarily based refractive index sensing software. Sci. Rep. 11, 16289 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tune, M. Ok., Chen, S. X., Hu, P. P., Huang, C. Z. & Zhou, J. Automated plasmonic resonance scattering imaging evaluation by way of deep studying. Anal. Chem. 93, 2619–2626 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Weng, S. Z. et al. Deep studying networks for the popularity and quantitation of surface-enhanced Raman spectroscopy. Analyst 145, 4827–4835 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Erzina, M. et al. Exact most cancers detection by way of the mix of functionalized SERS surfaces and convolutional neural community with impartial inputs. Sens. Actuators B308, 127660 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fang, X. L. et al. Quick discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep studying. J. Appl. Phys. 129, 127660 (2021).

    Article 

    Google Scholar
     

  • Hunter, R. et al. Optofluidic label-free SERS platform for fast micro organism detection in serum. Sens. Actuators B300, 126907 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lussier, F., Thibault, V., Charron, B., Wallace, G. Q. & Masson, J. F. Deep studying and synthetic intelligence strategies for Raman and surface-enhanced Raman scattering. Traits Anal. Chem. 124, 115796 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Thrift, W. J. et al. Deep studying evaluation of vibrational spectra of bacterial lysate for fast antimicrobial susceptibility testing. ACS Nano 14, 15336–15348 (2020).

    Article 

    Google Scholar
     

  • Kajendirarajah, U., Olivia Avilés, M. & Lagugné-Labarthet, F. Deciphering tip-enhanced Raman imaging of carbon nanotubes with deep studying neural networks. Phys. Chem. Chem. Phys. 22, 17857–17866 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zivanovic, V. et al. Optical nanosensing of lipid accumulation attributable to enzyme inhibition in dwell cells. ACS Nano 13, 9363–9375 (2019).

    Article 
    CAS 

    Google Scholar
     

  • de Albuquerque, C. D. L., Sobral-Filho, R. G., Poppi, R. J. & Brolo, A. G. Digital protocol for chemical evaluation at ultralow concentrations by surface-enhanced Raman scattering. Anal. Chem. 90, 1248–1254 (2018).

    Article 

    Google Scholar
     

  • Thrift, W. J. & Ragan, R. Quantification of analyte focus within the single molecule regime utilizing convolutional neural networks. Anal. Chem. 91, 13337–13342 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thrift, W. J. et al. Floor-enhanced Raman scattering-based odor compass: finding a number of chemical sources and pathogens. ACS Sens. 4, 2311–2319 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Smith, J. D. et al. Plasmonic anticounterfeit tags with excessive encoding capability quickly authenticated with deep machine studying. ACS Nano 15, 2901–2910 (2021).

    Article 
    CAS 

    Google Scholar
     

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lashgari, E., Liang, D. & Maoz, U. Information augmentation for deep-learning-based electroencephalography. J. Neurosci. Strategies 346, 108885 (2020).

    Article 

    Google Scholar
     

  • Xie, Y. et al. Easy methods to obtain auto-identification in Raman evaluation by spectral function extraction & adaptive hypergraph. Spectrochim. Acta A 222, 117086 (2019).

    Article 
    CAS 

    Google Scholar
     

  • So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep studying enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).

    Article 

    Google Scholar
     

  • Xu, X., Aggarwal, D. & Shankar, Ok. Instantaneous property prediction and inverse design of plasmonic nanostructures utilizing machine studying: present purposes and future instructions. Nanomaterials 12, 633 (2022).

    Article 

    Google Scholar
     

  • Kabir, H. M. D., Khosravi, A., Hosen, M. A. & Nahavandi, S. Neural network-based uncertainty quantification: a survey of methodologies and purposes. IEEE Entry 6, 36218–36234 (2018).

    Article 

    Google Scholar
     

  • Jospin, L. V., Laga, H., Boussaid, F., Buntine, W. & Bennamoun, M. Fingers-on bayesian neural networks – a tutorial for deep studying customers. IEEE Comput. Intell. Magazine. 17, 29–48 (2022).

    Article 

    Google Scholar
     

  • Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine studying with human data. iScience 23, 101656 (2020).

    Article 

    Google Scholar
     

  • Nickel, M., Murphy, Ok., Tresp, V. & Gabrilovich, E. A assessment of relational machine studying for data graphs. Proc. IEEE 104, 11–33 (2016).

    Article 

    Google Scholar
     

  • Adadi, A. & Berrada, M. Peeking contained in the black-box: a survey on explainable synthetic intelligence. IEEE Entry 6, 52138–52160 (2018).

    Article 

    Google Scholar
     

  • Gilpin, L. H. et al. Explaining explanations: an summary of interpretability of machine studying. In Proc. 2018 IEEE fifth Worldwide Convention on Information Science and Superior Analytics (DSAA) 80–89 (IEEE, 2018).

  • Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: a assessment of machine studying interpretability strategies. Entropy 23, 18 (2021).

    Article 

    Google Scholar
     

  • Lipton, Z. C. The mythos of mannequin interpretability: in machine studying, the idea of interpretability is each vital and slippery. Queue 16, 31–57 (2018).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments