Mayer, Ok. M. & Hafner, J. H. Localized floor plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).
Langer, J. et al. Current and way forward for surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).
Willets, Ok. A., Wilson, A. J., Sundaresan, V. & Joshi, P. B. Tremendous-resolution imaging and plasmonics. Chem. Rev. 117, 7538–7582 (2017).
Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced scorching provider science and expertise. Nat. Nanotechnol. 10, 25–34 (2015).
Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).
Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962 (2015).
Gu, M. et al. Nanoplasmonics: a frontier of photovoltaic photo voltaic cells. Nanophotonics 1, 235–248 (2012).
Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Gentle Sci. Appl 9, 90 (2020).
Abadeer, N. S. & Murphy, C. J. Current progress in most cancers thermal remedy utilizing gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016).
Xavier, J., Yu, D. S., Jones, C., Zossimova, E. & Vollmer, F. Quantum nanophotonic and nanoplasmonic sensing: in the direction of quantum optical bioscience laboratories on chip. Nanophotonics 10, 1387–1435 (2021).
Zhou, Z.-Ok. et al. Quantum plasmonics get utilized. Prog. Quantum Electron. 65, 1–20 (2019).
Henry, A.-I. et al. Correlated construction and optical property research of plasmonic nanoparticles. J. Phys. Chem. C 115, 9291–9305 (2011).
Carleo, G. et al. Machine studying and the bodily sciences. Rev. Mod. Phys. 91, 045002 (2019).
Butler, Ok. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine studying for molecular and supplies science. Nature 559, 547–555 (2018).
Brown, Ok. A., Brittman, S., Maccaferri, N., Jariwala, D. & Celano, U. Machine studying in nanoscience: huge knowledge at small scales. Nano Lett. 20, 2–10 (2020).
Vahidzadeh, E. & Shankar, Ok. Synthetic neural network-based prediction of the optical properties of spherical core–shell plasmonic metastructures. Nanomaterials 11, 633 (2021).
Malkiel, I. et al. Plasmonic nanostructure design and characterization by way of deep studying. Gentle Sci. Appl. 7, 60 (2018).
Kim, W. et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal ailments in ladies. ACS Nano 12, 7100–7108 (2018).
Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients close to cells. ACS Nano 13, 1403–1411 (2019).
Shi, H. et al. Organising a surface-enhanced Raman scattering database for artificial-intelligence-based label-free discrimination of tumor suppressor genes. Anal. Chem. 90, 14216–14221 (2018).
Tao, H. et al. Nanoparticle synthesis assisted by machine studying. Nat. Rev. Mater. 6, 701–716 (2021).
Yen, S.-C., Chen, Y.-L. & Su, Y.-H. Supplies genome evolution of floor plasmon resonance traits of Au nanoparticles embellished ZnO nanorods. APL Mater. 8, 091109 (2020).
Leong, Y. X. et al. Floor-enhanced Raman scattering (SERS) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 21, 2642–2649 (2021).
Macias, G. et al. Whisky tasting utilizing a bimetallic nanoplasmonic tongue. Nanoscale 11, 15216–15223 (2019).
Zhang, T. et al. Environment friendly spectrum prediction and inverse design for plasmonic waveguide techniques primarily based on synthetic neural networks. Photon. Res. 7, 368–380 (2019).
Nelson, M. D. & Di Vece, M. Utilizing a neural community to enhance the optical absorption in halide perovskite layers containing core-shells silver nanoparticles. Nanomaterials 9, 437 (2019).
He, J., He, C., Zheng, C., Wang, Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design utilizing machine studying. Nanoscale 11, 17444–17459 (2019).
Roberts, N. B. & Keshavarz Hedayati, M. A deep studying method to the ahead prediction and inverse design of plasmonic metasurface structural coloration. Appl. Phys. Lett. 119, 061101 (2021).
Wang, M., Wang, T., Cai, P. & Chen, X. Nanomaterials discovery and design by machine studying. Small Strategies 3, 1900025 (2019).
Kelly, Ok. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of steel nanoparticles: the affect of measurement, form, and dielectric atmosphere. J. Phys. Chem. B 107, 668–677 (2003).
Li, X., Shu, J., Gu, W. & Gao, L. Deep neural community for plasmonic sensor modeling. Choose. Mater. Specific 9, 3857–3862 (2019).
Pashkov, D. M. et al. Quantitative evaluation of the UV–vis spectra for gold nanoparticles powered by supervised machine studying. J. Phys. Chem. C 125, 8656–8666 (2021).
Arzola-Flores, J. A. & Gonzalez, A. L. Machine studying for predicting the floor plasmon resonance of good and concave gold nanocubes. J. Phys. Chem. C 124, 25447–25454 (2020).
Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine studying of scientific articles by extracting, structuring, and visualizing data. J. Chem. Inf. Mannequin. 60, 2876–2887 (2020).
Ashalley, E. et al. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photon. Res. 8, 1213–1225 (2020).
Sajedian, I., Badloe, T. & Rho, J. Optimisation of color technology from dielectric nanostructures utilizing reinforcement studying. Choose. Specific 27, 5874–5883 (2019).
Liu, D., Tan, Y., Khoram, E. & Yu, Z. Coaching deep neural networks for the inverse design of nanophotonic buildings. ACS Photonics 5, 1365–1369 (2018).
Kasani, S., Curtin, Ok. & Wu, N. A assessment of 2D and 3D plasmonic nanostructure array patterns: fabrication, mild administration and sensing purposes. Nanophotonics 8, 2065–2089 (2019).
Glotzer, S. C. & Solomon, M. J. Anisotropy of constructing blocks and their meeting into advanced buildings. Nat. Mater. 6, 557–562 (2007).
MacFarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).
Tao, H. C. et al. Nanoparticle synthesis assisted by machine studying. Nat. Rev. Mater. 6, 701–716 (2021).
Ringe, E., Van Duyne, R. P. & Marks, L. D. Kinetic and thermodynamic modified Wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859–15870 (2013).
Salley, D. et al. A nanomaterials discovery robotic for the Darwinian evolution of form programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).
Pinho, B. & Torrente-Murciano, L. Dial-a-particle: exact manufacturing of plasmonic nanoparticles primarily based on early progress data – redefining automation for gradual materials synthesis. Adv. Vitality Mater. 11, 2100918 (2021).
Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).
Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated improvement of colloidal nanomaterials enabled by modular microfluidic reactors: towards autonomous robotic experimentation. Adv. Mater. 33, 2004495 (2021).
Coley, C. W., Inexperienced, W. H. & Jensen, Ok. F. Machine studying in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).
Copp, S. M., Bogdanov, P., Debord, M., Singh, A. & Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine studying. Adv. Mater. 26, 5839–5845 (2014).
Copp, S. M. et al. Fluorescence coloration by data-driven design of genomic silver clusters. ACS Nano 12, 8240–8247 (2018).
Adorf, C. S., Moore, T. C., Melle, Y. J. U. & Glotzer, S. C. Evaluation of self-assembly pathways with unsupervised machine studying algorithms. J. Phys. Chem. B 124, 69–78 (2020).
Dijkstra, M. & Luijten, E. From predictive modelling to machine studying and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).
Nette, J., Howes, P. D. & deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: quick, environment friendly, and data-rich. Adv. Mater. Technol. 5, 2000060 (2020).
Wu, C.-C., Pan, F. & Su, Y.-H. Floor plasmon resonance of gold nano-sea-urchins managed by machine-learning-based regulation in seed-mediated progress. Adv. Photon. Res. 2, 2170031 (2021).
Mekki-Berrada, F. et al. Two-step machine studying permits optimized nanoparticle synthesis. npj Comput. Mater. 7, 55 (2021).
Dong, B. et al. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel technique, and fast analysis by way of machine studying. Ultrason. Sonochem. 73, 105485 (2021).
Fernandes, D. L. A. et al. Inexperienced microfluidic synthesis of monodisperse silver nanoparticles by way of genetic algorithm optimization. RSC Adv. 6, 95693–95697 (2016).
Fukada, Ok. & Seyama, M. Microfluidic units managed by machine studying with failure experiments. Anal. Chem. 94, 7060–7065 (2022).
Moen, E. et al. Deep studying for mobile picture evaluation. Nat. Strategies 16, 1233–1246 (2019).
Hopper, E. R. et al. Dimension management within the colloidal synthesis of plasmonic magnesium nanoparticles. J. Phys. Chem. C 126, 563–577 (2022).
Woehrle, G. H., Hutchinson, J. E., Ozkar, S. & Finke, R. G. Evaluation of nanoparticle transmission electron microscopy knowledge utilizing a public- area image-processing program, picture. Turk. J. Chem. 30, 1–13 (2006).
Wang, X. et al. Autodetect-mNP: an unsupervised machine studying algorithm for automated evaluation of transmission electron microscope photos of steel nanoparticles. JACS Au 1, 316–327 (2021).
Lee, B. et al. Statistical characterization of the morphologies of nanoparticles by machine studying primarily based electron microscopy picture evaluation. ACS Nano 14, 17125–17133 (2020).
Xu, S. et al. Deep studying evaluation of polaritonic wave photos. ACS Nano 15, 18182–18191 (2021).
Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine studying to disclose nanoparticle dynamics from liquid-phase TEM movies. ACS Cent. Sci. 6, 1421–1430 (2020).
Zhong, Y., Li, C., Zhou, H. & Wang, G. Growing noise-resistant three-dimensional single particle monitoring utilizing deep neural networks. Anal. Chem. 90, 10748–10757 (2018).
Moon, G., Son, T., Lee, H. & Kim, D. Deep studying method for enhanced detection of floor plasmon scattering. Anal. Chem. 91, 9538–9545 (2019).
Ma, Y. P., Li, Q., Luo, J. B., Huang, C. Z. & Zhou, J. Weak response scatterometry of plasmonic resonance mild scattering with machine studying. Anal. Chem. 93, 12131–12138 (2021).
Horgan, C. C. et al. Excessive-throughput molecular imaging by way of deep-learning-enabled Raman spectroscopy. Anal. Chem. 93, 15850–15860 (2021).
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Nelayah, J. et al. Mapping floor plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
Collins, S. M. & Midgley, P. A. Progress and alternatives in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017).
Nicoletti, O. et al. Three-dimensional imaging of localized floor plasmon resonances of steel nanoparticles. Nature 502, 80–84 (2013).
Dobigeon, N. & Brun, N. Spectral combination evaluation of EELS spectrum-images. Ultramicroscopy 120, 25–34 (2012).
Altmann, Y., McLaughlin, S. & Hero, A. Strong linear spectral unmixing utilizing anomaly detection. IEEE Trans. Comput. Imaging 1, 74–85 (2015).
Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding data utilizing multivariate evaluation of electron energy-loss spectrum photos. Ultramicroscopy 106, 1024–1032 (2006).
Kalinin, S. V. et al. Separating bodily distinct mechanisms in advanced infrared plasmonic nanostructures by way of machine studying enhanced electron power loss spectroscopy. Adv. Choose. Mater. 9, 2001808 (2021).
Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic steel nanoparticles. Nat. Mater. 14, 567–576 (2015).
Mukherjee, S. et al. Sizzling-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).
van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored on the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).
Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for environment friendly conversion of photo voltaic to chemical power. Nat. Mater. 10, 911–921 (2011).
Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine studying for accelerated discovery of photo voltaic photocatalysts. ACS Catal. 9, 11774–11787 (2019).
Martirez, J. M. P., Bao, J. L. & Carter, E. A. First-principles insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72, 99–119 (2021).
Rück, M., Garlyyev, B., Mayr, F., Bandarenka, A. S. & Gagliardi, A. Oxygen discount actions of strained platinum core–shell electrocatalysts predicted by machine studying. J. Phys. Chem. Lett. 11, 1773–1780 (2020).
Chen, C. & Li, S. Z. Valence electron density-dependent pseudopermittivity for nonlocal results in optical properties of metallic nanoparticles. ACS Photonics 5, 2295–2304 (2018).
Hu, W. et al. Machine studying protocol for surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 6026–6031 (2019).
Chu, W., Saidi, W. A. & Prezhdo, O. V. Lengthy-lived scorching electron in a metallic particle for plasmonics and catalysis: ab initio nonadiabatic molecular dynamics with machine studying. ACS Nano 14, 10608–10615 (2020).
Solar, B., Fernandez, M. & Barnard, A. S. Machine studying for silver nanoparticle electron switch property prediction. J. Chem. Inf. Mannequin. 57, 2413–2423 (2017).
Nesfchi, M. M. et al. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the method by synthetic intelligence methods. Mater. Sci. Semicond. Course of. 122, 105465 (2021).
Mikolajczyk, A. et al. A chemoinformatics method for the characterization of hybrid nanomaterials: safer and environment friendly design perspective. Nanoscale 11, 11808–11818 (2019).
Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis results in merchandise recognized from e-beam and x-ray-induced floor chemistry. Nano Lett. 18, 6740–6749 (2018).
Domulevicz, L., Jeong, H., Paul, N. Ok., Gomez-Diaz, J. S. & Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem. Int. Ed. 60, 16436–16441 (2021).
Tian, C. et al. Deep studying on picture denoising: an summary. Neural Netw. 131, 251–275 (2020).
Adir, O. et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv. Mater. 32, 1901989 (2020).
Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine studying. ACS Sens. 5, 3346–3364 (2020).
Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Synthetic intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).
Masson, J. F. Floor plasmon resonance medical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017).
Gomes, J. C. M., Souza, L. C. & Oliveira, L. C. SmartSPR sensor: machine studying approaches to create clever floor plasmon primarily based sensors. Biosens. Bioelectron. 172, 112760 (2021).
Thadson, Ok., Visitsattapongse, S. & Pechprasarn, S. Deep learning-based single-shot section retrieval algorithm for floor plasmon resonance microscope primarily based refractive index sensing software. Sci. Rep. 11, 16289 (2021).
Tune, M. Ok., Chen, S. X., Hu, P. P., Huang, C. Z. & Zhou, J. Automated plasmonic resonance scattering imaging evaluation by way of deep studying. Anal. Chem. 93, 2619–2626 (2021).
Weng, S. Z. et al. Deep studying networks for the popularity and quantitation of surface-enhanced Raman spectroscopy. Analyst 145, 4827–4835 (2020).
Erzina, M. et al. Exact most cancers detection by way of the mix of functionalized SERS surfaces and convolutional neural community with impartial inputs. Sens. Actuators B308, 127660 (2020).
Fang, X. L. et al. Quick discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep studying. J. Appl. Phys. 129, 127660 (2021).
Hunter, R. et al. Optofluidic label-free SERS platform for fast micro organism detection in serum. Sens. Actuators B300, 126907 (2019).
Lussier, F., Thibault, V., Charron, B., Wallace, G. Q. & Masson, J. F. Deep studying and synthetic intelligence strategies for Raman and surface-enhanced Raman scattering. Traits Anal. Chem. 124, 115796 (2020).
Thrift, W. J. et al. Deep studying evaluation of vibrational spectra of bacterial lysate for fast antimicrobial susceptibility testing. ACS Nano 14, 15336–15348 (2020).
Kajendirarajah, U., Olivia Avilés, M. & Lagugné-Labarthet, F. Deciphering tip-enhanced Raman imaging of carbon nanotubes with deep studying neural networks. Phys. Chem. Chem. Phys. 22, 17857–17866 (2020).
Zivanovic, V. et al. Optical nanosensing of lipid accumulation attributable to enzyme inhibition in dwell cells. ACS Nano 13, 9363–9375 (2019).
de Albuquerque, C. D. L., Sobral-Filho, R. G., Poppi, R. J. & Brolo, A. G. Digital protocol for chemical evaluation at ultralow concentrations by surface-enhanced Raman scattering. Anal. Chem. 90, 1248–1254 (2018).
Thrift, W. J. & Ragan, R. Quantification of analyte focus within the single molecule regime utilizing convolutional neural networks. Anal. Chem. 91, 13337–13342 (2019).
Thrift, W. J. et al. Floor-enhanced Raman scattering-based odor compass: finding a number of chemical sources and pathogens. ACS Sens. 4, 2311–2319 (2019).
Smith, J. D. et al. Plasmonic anticounterfeit tags with excessive encoding capability quickly authenticated with deep machine studying. ACS Nano 15, 2901–2910 (2021).
LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).
Lashgari, E., Liang, D. & Maoz, U. Information augmentation for deep-learning-based electroencephalography. J. Neurosci. Strategies 346, 108885 (2020).
Xie, Y. et al. Easy methods to obtain auto-identification in Raman evaluation by spectral function extraction & adaptive hypergraph. Spectrochim. Acta A 222, 117086 (2019).
So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep studying enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).
Xu, X., Aggarwal, D. & Shankar, Ok. Instantaneous property prediction and inverse design of plasmonic nanostructures utilizing machine studying: present purposes and future instructions. Nanomaterials 12, 633 (2022).
Kabir, H. M. D., Khosravi, A., Hosen, M. A. & Nahavandi, S. Neural network-based uncertainty quantification: a survey of methodologies and purposes. IEEE Entry 6, 36218–36234 (2018).
Jospin, L. V., Laga, H., Boussaid, F., Buntine, W. & Bennamoun, M. Fingers-on bayesian neural networks – a tutorial for deep studying customers. IEEE Comput. Intell. Magazine. 17, 29–48 (2022).
Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine studying with human data. iScience 23, 101656 (2020).
Nickel, M., Murphy, Ok., Tresp, V. & Gabrilovich, E. A assessment of relational machine studying for data graphs. Proc. IEEE 104, 11–33 (2016).
Adadi, A. & Berrada, M. Peeking contained in the black-box: a survey on explainable synthetic intelligence. IEEE Entry 6, 52138–52160 (2018).
Gilpin, L. H. et al. Explaining explanations: an summary of interpretability of machine studying. In Proc. 2018 IEEE fifth Worldwide Convention on Information Science and Superior Analytics (DSAA) 80–89 (IEEE, 2018).
Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: a assessment of machine studying interpretability strategies. Entropy 23, 18 (2021).
Lipton, Z. C. The mythos of mannequin interpretability: in machine studying, the idea of interpretability is each vital and slippery. Queue 16, 31–57 (2018).