Liu, C. et al. Two-dimensional supplies for next-generation computing applied sciences. Nat. Nanotechnol. 15, 545–557 (2020).
Jung, S.-G., Kim, J.-Ok. & Yu, H.-Y. Analytical mannequin of contact resistance in vertically stacked nanosheet FETs for sub-3-nm know-how node. IEEE Trans. Electron Gadgets 69, 930–935 (2022).
Watson, A. J., Lu, W., Guimarães, M. H. D. & Stöhr, M. Switch of large-scale two-dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021).
Zhang, S. et al. Wafer-scale transferred multilayer MoS2 for prime efficiency area impact transistors. Nanotechnology 30, 174002 (2019).
Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride movie by way of self-collimated grain formation. Science 362, 817–821 (2018).
Li, T. et al. Epitaxial development of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Leong, W. S. et al. Paraffin-enabled graphene switch. Nat. Commun. 10, 867 (2019).
Zhang, T. et al. Clear switch of 2D transition metallic dichalcogenides utilizing cellulose acetate for atomic decision characterizations. ACS Appl. Nano Mater. 2, 5320–5328 (2019).
Wang, P. et al. Excessive-fidelity switch of chemical vapor deposition grown 2D transition metallic dichalcogenides by way of substrate decoupling and polymer/small molecule composite. ACS Nano 14, 7370–7379 (2020).
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Cui, X. et al. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).
Kim, C. et al. Fermi stage pinning at electrical metallic contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).
English, C. D., Shine, G., Dorgan, V. E., Saraswat, Ok. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metallic deposition. Nano Lett. 16, 3824–3830 (2016).
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. Excessive efficiency multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
English, C. D., Smithe, Ok. Ok. H. & Pop, E. Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm prime gates. In Proc. 2016 IEEE Worldwide Electron Gadgets Assembly 131–134 (IEEE, 2016).
McClellan, C. J., Yalon, E., Smithe, Ok. Ok. H., Suryavanshi, S. V. & Pop, E. Excessive present density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Smithe, Ok. Ok. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in artificial monolayer MoS2 gadgets. ACS Nano 11, 8456–8463 (2017).
Guimarães, M. H. D. et al. Atomically skinny Ohmic edge contacts between two-dimensional supplies. ACS Nano 10, 6392–6399 (2016).
Smets, Q. et al. Extremely-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain present. In 2019 IEEE Worldwide Electron Gadgets Assembly 23.2.1–23.2.4 (IEEE, 2019).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Kim, B.-Ok. et al. Origins of real Ohmic van der Waals contact between indium and MoS2. npj 2D Mater. Appl. 5, 9 (2021).
Kinoshita, Ok. et al. Dry launch switch of graphene and few-layer h-BN by using thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 3, 22 (2019).
Frisenda, R. et al. Current progress within the meeting of nanodevices and van der Waals heterostructures by deterministic placement of 2D supplies. Chem. Soc. Rev. 47, 53–68 (2018).
Schranghamer, T. F., Sharma, M., Singh, R. & Das, S. Assessment and comparability of layer switch strategies for two-dimensional supplies for rising purposes. Chem. Soc. Rev. 50, 11032–11054 (2021).
Wooden, J. D. et al. Annealing free, clear graphene switch utilizing different polymer scaffolds. Nanotechnology 26, 055302 (2015).
Zhang, L. et al. Injury-free and fast switch of CVD-grown two-dimensional transition metallic dichalcogenides by dissolving sacrificial water-soluble layers. Nanoscale 9, 19124–19130 (2017).
Van Ngoc, H., Qian, Y., Han, S. Ok. & Kang, D. J. PMMA-etching-free switch of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer technique. Sci. Rep. 6, 33096 (2016).
Lu, F., Karmakar, A., Shahi, S. & Einarsson, E. Selective and confined development of transition metallic dichalcogenides on transferred graphene. RSC Adv. 7, 37310–37314 (2017).
Yue, Y., Feng, Y., Chen, J., Zhang, D. & Feng, W. Two-dimensional large-scale bandgap-tunable monolayer MoS2(1−x)Se2x/graphene heterostructures for phototransistors. J. Mater. Chem. C 5, 5887–5896 (2017).
Lin, Z. et al. Controllable development of large-size crystalline MoS2 and resist-free switch assisted with a Cu skinny movie. Sci. Rep. 5, 18596 (2015).
Jiang, G., Feng, J., Zhang, M., Zhang, S. & Huang, H. Construction, and thermal and mechanical properties of poly(propylene carbonate) capped with several types of acid anhydride by way of reactive extrusion. RSC Adv. 6, 107547–107555 (2016).
Gao, J. et al. A promising different to standard polyethylene with poly(propylene carbonate) bolstered by graphene oxide nanosheets. J. Mater. Chem. 21, 17627–17630 (2011).
Choi, S. H. et al. Water-assisted synthesis of molybdenum disulfide movie with single natural liquid precursor. Sci. Rep. 7, 1983 (2017).
Chang, M.-C. et al. Quick development of large-grain and steady MoS2 movies by means of a self-capping vapor-liquid-solid technique. Nat. Commun. 11, 3682 (2020).
Chen, F., Wang, L., Wang, T. & Ji, X. Enhanced native photoluminescence of a multilayer MoS2 nanodot stacked on monolayer MoS2 flakes. Choose. Mater. Specific 7, 1365–1373 (2017).
Xu, S. et al. Common low-temperature Ohmic contacts for quantum transport in transition metallic dichalcogenides. 2D Mater. 3, 021007 (2016).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Allain, A., Kang, J., Banerjee, Ok. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Jena, D. 2D crystal semiconductors: intimate contacts. Nat. Mater. 13, 1076–1078 (2014).
Choi, W. et al. Low-temperature behaviors of multilayer MoS2 transistors with ohmic and Schottky contacts. Appl. Phys. Lett. 115, 033501 (2019).
Li, X.-X. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 8, 970 (2017).
Knobloch, T. et al. The efficiency limits of hexagonal boron nitride as an insulator for scaled CMOS gadgets based mostly on two-dimensional supplies. Nat. Electron. 4, 98–108 (2021).
Chan, M. Y. et al. Suppression of thermally activated provider transport in atomically skinny MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013).
Li, S. et al. Nanometre-thin indium tin oxide for superior high-performance electronics. Nat. Mater. 18, 1091–1097 (2019).
Daus, A. et al. Excessive-performance versatile nanoscale transistors based mostly on transition metallic dichalcogenides. Nat. Electron. 4, 495–501 (2021).
Wu, S. H. et al. Efficiency increase of crystalline In-Ga-Zn-O materials and transistor with extraordinarily low leakage for IoT normally-off CPU software. In 2017 Symposium on VLSI Circuits T166–T167 (IEEE, 2017).
Lyu, R.-J., Shie, B.-S., Lin, H.-C., Li, P.-W. & Huang, T.-Y. Downscaling metallic—oxide thin-film transistors to sub-50 nm in an beautiful film-profile engineering strategy. IEEE Trans. Electron Gadgets 64, 1069–1075 (2017).
Wu, S. H. et al. Extraordinarily low energy c-axis aligned crystalline In-Ga-Zn-O 60 nm transistor built-in with business 65 nm Si MOSFET for IoT normally-off CPU software. In 2016 IEEE Symposium on VLSI Know-how 1–2 (IEEE, 2016).
Matsuda, S. et al. 30-nm-channel-length c-axis aligned crystalline In-Ga-Zn-O transistors with low off-state leakage present and steep subthreshold traits. In 2015 Symposium on VLSI Know-how T216–T217 (IEEE, 2015).
Matsubayashi, D. et al. 20-nm-node trench-gate-self-aligned crystalline In-Ga-Zn-oxide FET with excessive frequency and low off-state present. In 2015 IEEE Worldwide Electron Gadgets Assembly 6.5.1–6.5.4 (IEEE, 2015).
Kobayashi, Y. et al. Scaling to 50-nm c-axis aligned crystalline In-Ga-Zn oxide FET with surrounded channel construction and its software for less-than-5-nsec writing velocity reminiscence. In 2014 Symposium on VLSI Know-how: Digest of Technical Papers 1–2 (IEEE, 2014).
Lin, H.-C., Shie, B.-S. & Huang, T.-Y. 100-nm IGZO thin-film transistors with movie profile engineering. IEEE Trans. Electron Gadgets 61, 2224–2227 (2014).
Lyu, R.-J. et al. Movie profile engineering (FPE): a brand new idea for manufacturing of short-channel metallic oxide TFTs. In 2013 IEEE Worldwide Electron Gadgets Assembly 11.2.1–11.2.4 (IEEE, 2013).
Xiong, X. et al. Excessive efficiency black phosphorus digital and photonic gadgets with HfLaO dielectric. IEEE Electron System Lett. 39, 127–130 (2018).
Si, M., Yang, L., Du, Y. & Ye, P. D. Black phosphorus field-effect transistor with file drain present exceeding 1 A/mm. In 2017 seventy fifth Annual System Analysis Convention 1–2 (IEEE, 2017).
Yang, L. et al. How necessary is the metallic–semiconductor contact for Schottky barrier transistors: a case research on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017).
Li, T. et al. Excessive area transport of excessive efficiency black phosphorus transistors. Appl. Phys. Lett. 110, 163507 (2017).
Li, Ok.-S. et al. MoS2 U-shape MOSFET with 10 nm channel size and poly-Si supply/drain serving as seed for full wafer CVD MoS2 availability. In 2016 IEEE Symposium on VLSI Know-how 1–2 (IEEE, 2016).
Liu, Y. et al. Pushing the efficiency restrict of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).
Nourbakhsh, A. et al. 15-nm channel size MoS2 FETs with single- and double-gate constructions. In 2015 Symposium on VLSI Know-how T28–T29 (IEEE, 2015).
Yang, L., Lee, R. T. P., Rao, S. S. P., Tsai, W. & Ye, P. D. 10 nm nominal channel size MoS2 FETs with EOT 2.5 nm and 0.52 mA/µm drain present. In 2015 73rd Annual System Analysis Convention 237–238 (IEEE, 2015).
Yang, L. et al. Excessive-performance MoS2 field-effect transistors enabled by chloride doping: file low contact resistance (0.5 kΩ·µm) and file excessive drain present (460 µA/µm). In 2014 Symposium on VLSI Know-how: Digest of Technical Papers 1–2 (IEEE, 2014).
Li, W. et al. Excessive-performance CVD MoS2 transistors with self-aligned top-gate and Bi contact. In 2021 IEEE Worldwide Electron Gadgets Assembly 37.3.1–37.3.4 (IEEE, 2021).
Kang, Ok. et al. Excessive-mobility three-atom-thick semiconducting movies with wafer-scale homogeneity. Nature 520, 656–660 (2015).
Chee, S.-S. et al. Reducing the Schottky barrier top by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv. Mater. 31, 1804422 (2019).
Smithe, Ok. Ok. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and efficiency projections of artificial monolayer MoS2 gadgets. 2D Mater. 4, 011009 (2016).