Fert, A., Cros, V. & Sampaio, J. Skyrmions on the observe. Nat. Nanotechnol. 8, 152–156 (2013).
Mathur, N., Stolt, M. J. & Jin, S. Magnetic skyrmions in nanostructures of non-centrosymmetric supplies. APL Mater. 7, 120703 (2019).
Yu, X. Z. et al. Actual-space commentary of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).
Park, H. S. et al. Commentary of the magnetic flux and three-dimensional construction of skyrmion lattices by electron holography. Nat. Nanotechnol. 9, 337–342 (2014).
Braun, H.-B. Topological results in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).
Coronado, E. Molecular magnetism: from chemical design to spin management in molecules, supplies and units. Nat. Rev. Mater. 5, 87–104 (2020).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Shibata, Ok. et al. Giant anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015).
Donnelly, C. et al. Three-dimensional magnetization constructions revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).
Rana, A. et al. Direct commentary of 3D topological spin textures and their interactions utilizing tender X-ray vector ptychography. Preprint at https://doi.org/10.48550/arXiv.2104.12933 (2021).
Bode, M. et al. Atomic spin construction of antiferromagnetic area partitions. Nat. Mater. 5, 477–481 (2006).
McVitie, S. & Cushley, M. Quantitative Fresnel Lorentz microscopy and the transport of depth equation. Ultramicroscopy 106, 423–431 (2006).
Lichte, H. Efficiency limits of electron holography. Ultramicroscopy 108, 256–262 (2008).
McVitie, S. et al. Aberration corrected Lorentz scanning transmission electron microscopy. Ultramicroscopy 152, 57–62 (2015).
Tate, M. W. et al. Excessive dynamic vary pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).
Ophus, C. 4-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and past. Microsc. Microanal. 25, 563–582 (2019).
Chapman, J., Batson, P., Waddell, E. & Ferrier, R. The direct willpower of magnetic area wall profiles by differential section distinction electron microscopy. Ultramicroscopy 3, 203–214 (1978).
Nguyen, Ok. X. et al. Disentangling magnetic and grain distinction in polycrystalline FeGe skinny movies utilizing four-dimensional Lorentz scanning transmission electron microscopy. Phys. Rev. Appl. 17, 034066 (2022).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials within the quantum concept. Phys. Rev. 115, 485–491 (1959).
Yu, X. Z. et al. Close to room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).
Kovács, A. et al. Mapping the magnetization fantastic construction of a lattice of Bloch-type skyrmions in an FeGe skinny movie. Appl. Phys. Lett. 111, 192410 (2017).
McGrouther, D. et al. Inner construction of hexagonal skyrmion lattices in cubic helimagnets. New J. Phys. 18, 095004 (2016).
Mermin, N. D. The topological concept of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Milnor, J. W. Topology From the Differentiable Viewpoint (Press Of Virginia, 1965).
Chen, Z. et al. Combined-state electron ptychography allows sub-angstrom decision imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).
Suzuki, T. et al. Enchancment of the accuracy of section commentary by modification of phase-shifting electron holography. Ultramicroscopy 118, 21–25 (2012).
Boureau, V. et al. Excessive-sensitivity mapping of magnetic induction fields with nanometer-scale decision: comparability of off-axis electron holography and pixelated differential section distinction. J. Phys. D: Appl. Phys. 54, 085001 (2020).
Shut, R., Chen, Z., Shibata, N. & Findlay, S. D. In the direction of quantitative, atomic-resolution reconstruction of the electrostatic potential by way of differential section distinction utilizing electrons. Ultramicroscopy 159, 124–137 (2015).
Isaacson, M. Electron beam induced harm of natural solids: implications for analytical electron microscopy. Ultramicroscopy 4, 193–199 (1979).
Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Stolt, M. J., Sigelko, X., Mathur, N. & Jin, S. Chemical stress stabilization of the cubic B20 construction in skyrmion internet hosting Fe1–xCoxGe alloys. Chem. Mater. 30, 1146–1154 (2018).
Maiden, A. M. & Rodenburg, J. M. An improved ptychographical section retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).
Rodenburg, J. M. & Bates, R. H. T. The speculation of super-resolution electron microscopy by way of Wigner-distribution deconvolution. Philos. Trans. R Soc. A 339, 521–553 (1992).
Thibault, P. & Guizar-Sicairos, M. Most-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).
Odstrcil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Choose. Categorical 26, 3108–3123 (2018).
Odstrcil, M. et al. Ptychographic coherent diffractive imaging with orthogonal probe leisure. Choose. Categorical 24, 8360–8369 (2016).
Reimer, L. Transmission Electron Microscopy (Springer, 1989).
Lubk, A. et al. Nanoscale three-dimensional reconstruction of elastic and inelastic imply free path lengths by electron holographic tomography. Appl. Phys. Lett. 105, 173101 (2014).
Egerton, R. F. & Cheng, S. C. Measurement of native thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231–244 (1987).
Bechhoefer, J. Curve matches within the presence of random and systematic error. Am. J. Phys. 68, 424–429 (2000).
Music, D. et al. Quantification of magnetic floor and edge states in an FeGe nanostripe by off-axis electron holography. Phys. Rev. Lett. 120, 167204 (2018).
Mochizuki, M. et al. Thermally pushed ratchet movement of a skyrmion microcrystal and topological magnon Corridor impact. Nat. Mater. 13, 241–246 (2014).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Chen, Z. & Muller, D. A. Datasets for Lorentz electron ptychography for imaging magnetic textures past the diffraction restrict. Zenodo https://doi.org/10.5281/zenodo.6684163 (2022).
Chen, Z., Jiang, Y., Muller, D. A. & Odstrcil, M. PtychoShelves_EM, supply code for multislice electron ptychography. Zenodo https://doi.org/10.5281/zenodo.4659690 (2021).