Sharma B, John S. Nonalcoholic Steatohepatitis (NASH). StatPearls; 2021.
Antunes C, Azadfard M, Hoilat GJ, Gupta M. Fatty Liver. StatPearls; 2021.
Huang DQ, El-Serag HB, Loomba R. International epidemiology of NAFLD-related HCC: traits, predictions, threat components and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223–38.
Lazarus JV, Mark HE, Anstee QM, Arab JP, Batterham RL, Castera L, et al. Advancing the worldwide public well being agenda for NAFLD: a consensus assertion. Nat Rev Gastroenterol Hepatol. 2022;19(1):60–78.
Sanyal AJ. Previous, current and future views in nonalcoholic fatty liver illness. Nat Rev Gastroenterol Hepatol. 2019;16(6):377–86.
Sharma M, Premkumar M, Kulkarni AV, Kumar P, Reddy DN, Rao NP. Medicine for non-alcoholic steatohepatitis (NASH): quest for the Holy Grail. J Clin Transl Hepatol. 2021;9(1):40–50.
Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—present progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15(8):461–78.
Ng Ok, Stenzl A, Sharma A, Vasdev N. Urinary biomarkers in bladder most cancers: a evaluate of the present panorama and future instructions. Urol Oncol. 2021;39(1):41–51.
Vitorino R, Ferreira R, Guedes S, Amado F, Thongboonkerd V. What can urinary exosomes inform us? Cell Mol Life Sci: CMLS. 2021;78(7):3265–83.
Erdbrugger U, Blijdorp CJ, Bijnsdorp IV, Borras FE, Burger D, Bussolati B, et al. Urinary extracellular vesicles: a place paper by the urine job drive of the worldwide society for extracellular vesicles. J Extracell Vesicles. 2021;10(7): e12093.
Agudiez M, Martinez PJ, Martin-Lorenzo M, Heredero A, Santiago-Hernandez A, Molero D, et al. Evaluation of urinary exosomal metabolites identifies cardiovascular threat signatures with added worth to urine evaluation. BMC Biol. 2020;18(1):192.
Skotland T, Ekroos Ok, Kauhanen D, Simolin H, Seierstad T, Berge V, et al. Molecular lipid species in urinary exosomes as potential prostate most cancers biomarkers. Eur J Most cancers. 2017;70:122–32.
Panfoli I. Most cancers exosomes in urine: a promising biomarker supply. Transl Most cancers Res. 2017;6(S8):S1389–93.
Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s illness. Mov Disord. 2016;31(10):1543–50.
Yang Q, Cheng L, Hu L, Lou D, Zhang T, Li J, et al. An integrative microfluidic gadget for isolation and ultrasensitive detection of lung cancer-specific exosomes from affected person urine. Biosens Bioelectron. 2020;163: 112290.
Zhu Q, Cheng L, Deng C, Huang L, Li J, Wang Y, et al. The genetic supply monitoring of human urinary exosomes. Proc Natl Acad Sci U S A. 2021;118(43):e2108876118.
Masoodi M, Gastaldelli A, Hyotylainen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic checks. Nat Rev Gastroenterol Hepatol. 2021;18(12):835–56.
Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, et al. Lipid-induced signaling causes launch of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150(4):956–67.
Eguchi A, Feldstein AE. Extracellular vesicles in non-alcoholic and alcoholic fatty liver illnesses. Liver Res. 2018;2(1):30–4.
Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-’t Hoen EN, de Jager W, Wauben MH, et al. Impact of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Weight problems (Silver Spring, Md). 2014;22(10):2216–23.
Lee YS, Kim SY, Ko E, Lee JH, Yi HS, Yoo YJ, et al. Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci Rep. 2017;7(1):3710.
Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial irritation and atherogenesis by way of microRNA-1. J Hepatol. 2020;72(1):156–66.
Wu D, Zhu H, Wang H. Extracellular vesicles in non-alcoholic fatty liver illness and alcoholic liver illness. Entrance Physiol. 2021;12: 707429.
Ipsen DH, Tveden-Nyborg P. Extracellular vesicles as drivers of non-alcoholic fatty liver illness: small particles with huge impression. Biomedicines. 2021:9(1):93.
Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from pattern preparation to information evaluation: a primer. Anal Bioanal Chem. 2020;412(10):2191–209.
Chen ZZ, Gerszten RE. Metabolomics and proteomics in sort 2 diabetes. Circ Res. 2020;126(11):1613–27.
Griffin JL. Twenty years of metabonomics: so what has metabonomics achieved for toxicology? Xenobiotica; the destiny of international compounds in organic programs. 2020;50(1):110–4.
Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics towards customized drugs. Mass Spectrom Rev. 2019;38(3):221–38.
Han X, Gross RW. The foundations and improvement of lipidomics. J Lipid Res. 2021;63(2):100164.
Avela HF, Sirén H. Advances in lipidomics. Clin Chim Acta. 2020;510:123–41.
Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver illness. World J Hepatol. 2020;12(8):436–50.
Chen Y, Zhu Q, Cheng L, Wang Y, Li M, Yang Q, et al. Exosome detection by way of the ultrafast-isolation system: EXODUS. Nat Strategies. 2021;18(2):212–8.
Zhou W, Chen X, Zhou Y, Shi S, Liang C, Yu X, et al. Exosomes derived from immunogenically dying tumor cells as a flexible device for vaccination towards pancreatic most cancers. Biomaterials. 2022;280: 121306.
Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver illness. Molecular metabolism. 2021;50: 101143.
Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, et al. Plasma metabolomic profile in nonalcoholic fatty liver illness. Metabolism: Medical and Experimental. 2011;60(3):404–13.
Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, et al. Metabolism dysregulation induces a selected lipid signature of nonalcoholic steatohepatitis in sufferers. Sci Rep. 2017;7:46658.
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free fatty acid receptors as mediators and therapeutic targets in liver illness. Entrance Physiol. 2021;12: 656441.
Kimura T, Singh S, Tanaka N, Umemura T. Function of G protein-coupled receptors in hepatic stellate cells and approaches to anti-fibrotic remedy of non-alcoholic fatty liver illness. Entrance Endocrinol. 2021;12: 773432.
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, et al. Oxidative stress in NAFLD: function of vitamins and meals contaminants. Biomolecules. 2020;10(12):1702.
Attia SL, Softic S, Mouzaki M. Evolving function for pharmacotherapy in NAFLD/NASH. Clin Transl Sci. 2021;14(1):11–9.
Albhaisi S, Noureddin M. Present and potential therapies concentrating on irritation in NASH. Entrance Endocrinol. 2021;12: 767314.
Gariani Ok, Jornayvaz FR. Pathophysiology of NASH in endocrine illnesses. Endocr Join. 2021;10(2):R52-r65.
Chavez-Tapia NC, Rosso N, Tiribelli C. Impact of intracellular lipid accumulation in a brand new mannequin of non-alcoholic fatty liver illness. BMC Gastroenterol. 2012;12(1):1–10.
Kakisaka Ok, Suzuki Y, Fujiwara Y, Suzuki A, Kanazawa J, Takikawa Y. Caspase-independent hepatocyte loss of life: a results of the lower of lysophosphatidylcholine acyltransferase 3 in non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2019;34(7):1256–62.
García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. A complete untargeted metabonomic evaluation of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals necessary metabolic alterations. J Proteome Res. 2011;10(10):4825–34.
Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, et al. Lack of de novo phosphatidylinositol synthesis results in endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology (Baltimore, MD). 2011;54(2):452–62.
Shirouchi B, Nagao Ok, Inoue N, Furuya Ok, Koga S, Matsumoto H, et al. Dietary phosphatidylinositol prevents the event of nonalcoholic fatty liver illness in Zucker (fa/fa) rats. J Agric Meals Chem. 2008;56(7):2375–9.