Yu, N. et al. Mild propagation with section discontinuities: generalized legal guidelines of reflection and refraction. Science 334, 333–337 (2011).
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies bigger than these of standard échelette gratings. Decide. Lett. 23, 1081–1083 (1998).
Chen, S., Liu, W., Li, Z., Cheng, H. & Tian, J. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 32, 1805912 (2020).
Kim, M., Wong, A. M. H. & Eleftheriades, G. V. Optical Huygens’ metasurfaces with unbiased management of the magnitude and section of the native reflection coefficients. Phys. Rev. X 4, 041042 (2014).
Overvig, A. C. et al. Dielectric metasurfaces for full and unbiased management of the optical amplitude and section. Mild. Sci. Appl. 8, 92 (2019).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for full management of section and polarization with subwavelength spatial decision and excessive transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Mueller, J. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: unbiased section management of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).
Bao, Y., Ni, J. & Qiu, C. W. A minimalist single‐layer metasurface for arbitrary and full management of vector vortex beams. Adv. Mat. 32, 1905659 (2020).
Deng, Z. L. et al. Full‐colour complicated‐amplitude vectorial holograms primarily based on multi‐freedom metasurfaces. Adv. Func. Mat. 30, 1910610 (2020).
Liu, M. et al. Multifunctional metasurfaces enabled by simultaneous and unbiased management of section and amplitude for orthogonal polarization states. Mild. Sci. Appl. 10, 107 (2021).
Wu, T. et al. Dielectric metasurfaces for full management of section, amplitude, and polarization. Adv. Decide. Mater. 10, 2101223 (2022).
Bao, Y., Wen, L., Chen, Q., Qiu, C. W. & Li, B. Towards the capability restrict of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv. 7, eabh0365 (2021).
Svirko, Y., Zheludev, N. & Osipov, M. Layered chiral metallic microstructures with inductive coupling. Appl. Phys. Lett. 78, 498–500 (2010).
Kanda, N., Konishi, Okay. & Kuwata-Gonokami, M. Terahertz wave polarization rotation with double layered steel grating of complimentary chiral patterns. Decide. Specific 15, 11117–11125 (2007).
Epstein, A. & Eleftheriades, G. V. Arbitrary antenna arrays with out feed networks primarily based on cavity-excited omega-bianisotropic metasurfaces. IEEE Trans. Antennas Propag. 65, 1749–1756 (2017).
Ra’di, Y., Asadchy, V. S. & Tretyakov, S. A. Tailoring reflections from skinny composite metamirrors. IEEE Trans. Antennas Propag. 62, 3749–3760 (2014).
Yuan, Y. et al. Impartial section modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun. 11, 4186 (2020).
Tamir, T. & Oliner, A. A. Guided complicated waves. Half 1: Fields at an interface. Proc. Inst. Electr. Eng. 110, 310–324 (1963).
Tamir, T. & Oliner, A. A. Guided complicated waves. Half 2: Relation to radiation patterns. Proc. Inst. Electr. Eng. 110, 325–334 (1963).
Jackson, D. R. & Oliner, A. A. A leaky-wave evaluation of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag. 36, 905–910 (1988).
Jackson, D. R. & Oliner, A. A. Leaky-wave antennas. in Fashionable Antenna Handbook (ed Balanis, C. A.) 325–367 (Wiley, 2008).
Li, A., Singh, S. & Sievenpiper, D. Metasurfaces and their functions. Nanophotonics 7, 989–1011 (2018).
Monticone, F. & Alù, A. Leaky-wave concept, methods, and functions: from microwaves to seen frequencies. Proc. IEEE 103, 793–821 (2015).
Minatti, G., Caminita, F., Casaletti, M. & Maci, S. Spiral leaky-wave antennas primarily based on modulated floor impedance. IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
Tierney, B. B. & Grbic, A. Controlling leaky waves with 1-D cascaded metasurfaces. IEEE Trans. Antennas Propag. 66, 2143–2146 (2018).
Abdo-Sánchez, E., Chen, M., Epstein, A. & Eleftheriades, G. V. A leaky-wave antenna with managed radiation utilizing a bianisotropic Huygens’ metasurface. IEEE Trans. Antennas Propag. 67, 108–120 (2018).
Meng, Y. et al. Optical meta-waveguides for built-in photonics and past. Mild. Sci. Appl. 10, 235 (2021).
Li, Z. et al. Controlling propagation and coupling of waveguide modes utilizing phase-gradient metasurfaces. Nat. Nanotechnol. 12, 675–683 (2017).
Guo, X., Ding, Y., Chen, X., Duan, Y. & Ni, X. Molding free-space gentle with guided wave-driven metasurfaces. Sci. Adv. 6, eabb4172 (2020).
Xie, C. et al. Bifocal focusing and polarization demultiplexing by a guided wave-driven metasurface. Decide. Specific 29, 25709–25719 (2021).
Huang, Z., Marks, D. L. & Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography. Optica 6, 119–124 (2019).
Fang, B., Wang, Z., Gao, S., Zhu, S. & Li, T. Manipulating guided wave radiation with built-in geometric metasurface. Nanophotonics 11, 1923–1930 (2022).
Ding, Y. et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space gentle subject manipulation. ACS Photonics 9, 398–404 (2022).
Li, L., Yao, Okay., Wang, Z. & Liu, Y. Harnessing evanescent waves by bianisotropic metasurfaces. Laser Photonics Rev. 14, 1900244 (2020).
Ha, Y. et al. Monolithic‐built-in multiplexed gadgets primarily based on metasurface‐pushed guided waves. Adv. Idea Simul. 4, 2000239 (2021).
Yang, R. et al. Immersive tuning the guided waves for multifunctional on‐chip metaoptics. Laser Photonics Rev. 16, 2200127 (2022).
Shi, Y. et al. On-chip meta-optics for semi-transparent display screen show in sync with AR projection. Optica 9, 670–676 (2022).
Yulaev, A. et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization management. ACS Photonics 6, 2902–2909 (2019).
Koshelev, Okay., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by sure states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).
Overvig, A. C., Malek, S. C., Carter, M. J., Shrestha, S. & Yu, N. Choice guidelines for quasibound states within the continuum. Phys. Rev. B 102, 035434 (2020).
Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 017402 (2020).
Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states within the continuum. Phys. Rev. Lett. 126, 073001 (2021).
Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photonics Rev. 16, 2100633 (2022).
Lawrence, M. et al. Top quality issue section gradient metasurfaces. Nat. Nanotechnol. 15, 956–961 (2020).
Beckley, A. M., Brown, T. G. & Alonso, M. A. Full Poincaré beams. Decide. Specific 18, 10777–10785 (2010).
Overvig, A. C., Shrestha, S. & Yu, N. Dimerized excessive distinction gratings. Nanophotonics 7, 1157–1168 (2018).
Memarian, M. & Eleftheriades, G. V. Dirac leaky-wave antennas for steady beam scanning from photonic crystals. Nat. Commun. 6, 5855 (2015).
Overvig, A., Kasahara, Y., Xu, G. & Alù, A. Demonstration of a polarization-agnostic geometric section in nonlocal metasurfaces. Preprint at http://arxiv.org/abs/2302.13215 (2023).
Gerchberg, R. W. & Saxton, W. O. A sensible algorithm for the willpower of the section from picture and diffraction aircraft photos. Optik 35, 237–246 (1972).
Poulton, C. V. et al. Giant-scale silicon nitride nanophotonic section arrays at infrared and visual wavelengths. Decide. Lett. 42, 21–24 (2017).
Chauhan, N. et al. Photonic built-in Si3N4 ultra-large-area grating waveguide MOT interface for 3D atomic clock laser cooling. In 2019 Convention on Lasers and Electro-Optics (CLEO) STu4O.3 (IEEE, 2019).
Bates, Okay. A., Li, L., Roncone, R. L. & Burke, J. J. Gaussian beams from variable groove depth grating couplers in planar waveguides. Appl. Decide. 32, 2112–2116 (1993).
Zhao, Z. & Fan, S. Design ideas of apodized grating couplers. J. Mild. Technol. 38, 4435–4446 (2020).
Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A. & Smith, D. R. Subwavelength built-in photonics. Nature 560, 565–572 (2018).