Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–6.
Albrecht MG, Creighton JA. anomalously intense raman spectra of pyridine at a silver electrod. J Am Chem Soc. 1977;99:5215–7.
Jeanmaire DL, Vanduyne R. Floor raman spectroelectrochemistry: half I. heterocyclic, fragrant, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:1–20.
Halvorson RA, Vikesland PJ. Floor-enhanced raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol. 2010;40:7749–55.
Han Z, Liu H, Meng J, Yang L, Liu J, Liu J. Transportable package for identification and detection of medication in human urine utilizing surface-enhanced Raman spectroscopy. Anal Chem. 2015;87:9500–6.
Yang Y, Peng Y, Lin C, Lengthy L, Hu J, He J, Zeng H, Huang Z, Li Z-Y, Tanemura M, et al. Human ACE2-functionalized gold “virus-trap” nanostructures for correct seize of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Letters. 2021;13:109.
Wen BY, Wang A, Lin JS, Guan PC, Radjenovic PM, Zhang YJ, Tian ZQ, Li JF. A brand new strategy for quantitative surface-enhanced Raman spectroscopy by the kinetics of chemisorption. Small Strategies. 2021;5:2000993.
Jiang X, Tan ZY, Lin L, He J, He C, Thackray BD, Zhang YQ, Ye J. Floor-enhanced Raman nanoprobes with embedded requirements for quantitative ldl cholesterol detection. Small Strategies. 2018;2:1800182.
Lim JY, Nam JS, Shin H, Park J, Track HI, Kang M, Lim KI, Choi Y. Identification of newly rising influenza viruses by detecting the virally contaminated cells primarily based on floor enhanced Raman spectroscopy and principal element evaluation. Anal Chem. 2019;91:5677–84.
Haldavnekar R, Venkatakrishnan Okay, Tan B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro most cancers detection. Nat Commun. 2018;9:3065.
Yu F, Su M, Tian L, Wang H, Liu H. Natural solvent as inner requirements for quantitative and high-throughput liquid interfacial SERS evaluation in complicated media. Anal Chem. 2018;90:5232–8.
Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 2010;464:392–5.
Liu Z, Chen H, Jia Y, Zhang W, Zhao H, Fan W, Zhang W, Zhong H, Ni Y, Guo Z. A two-dimensional fingerprint nanoprobe primarily based on black phosphorus for bio-SERS evaluation and chemo-photothermal remedy. Nanoscale. 2018;10:18795–804.
Peterlinz KA, Georgiadis R. In situ kinetics of self-assembly by floor plasmon resonance spectroscopy. Langmuir. 1996;12:4731–40.
Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN. Localized floor plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005;5:2034–8.
Neddersen J, Chumanov G, Cotton TM. Laser ablation of metals: a brand new methodology for making ready SERS energetic colloids. Appl Spectrosc. 1993;47:1959–64.
Kneipp Okay, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS. Single molecule detection utilizing surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667–70.
Moskovits M. Floor roughness and the improved depth of Raman scattering by molecules adsorbed on metals. J Chem Phys. 1978;69:4159–61.
Nie SM, Emery SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–6.
Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP. Construction-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc. 2010;132:10903–10.
Keshavarz M, Kassanos P, Tan B, Venkatakrishnan Okay. Steel-oxide surface-enhanced Raman biosensor template in direction of point-of-care EGFR detection and most cancers diagnostics. Nanoscale Horizons. 2020;5:294–307.
Zeng ZC, Wang H, Johns P, Hartland GV, Schultz ZD. Photothermal microscopy of coupled nanostructures and the influence of nanoscale heating in surface-enhanced Raman spectroscopy. J Phys Chem. 2017;121:11623–31.
Yang LL, Yang Y, Ma YF, Li S, Wei YQ, Huang ZR, Lengthy NV. Fabrication of semiconductor ZnO nanostructures for versatile SERS software. Nanomaterials. 2017;7:398.
Yang LL, Peng YS, Yang Y, Liu JJ, Li ZY, Ma YF, Zhang Z, Wei YQ, Li S, Huang ZR, Lengthy NV. Inexperienced and delicate versatile semiconductor SERS substrates: hydrogenated black TiO2 nanowires (vol 1, pg 4516, 2018). Acs Utilized Nano Supplies. 2019;2:1737–1737.
Yilmaz M, Babur E, Ozdemir M, Gieseking RL, Dede Y, Tamer U, Schatz GC, Facchetti A, Usta H, Demirel G. Nanostructured natural semiconductor movies for molecular detection with surface-enhanced Raman spectroscopy. Nat Mater. 2017;16:918.
Ling X, Fang WJ, Lee YH, Araujo PT, Zhang X, Rodriguez-Nieva JF, Lin YX, Zhang J, Kong J, Dresselhaus MS. Raman enhancement impact on two-dimensional layered supplies: graphene, h-BN and MoS2. Nano Lett. 2014;14:3033–40.
Kundu A, Rani R, Hazra KS. Managed nanofabrication of metal-free SERS substrate on few layered black phosphorus by low energy targeted laser irradiation. Nanoscale. 2019;11:16245–52.
Peng YS, Lin CL, Lengthy L, Masaki T, Tang M, Yang LL, Liu JJ, Huang ZR, Li ZY, Luo XY, et al. Cost-Switch resonance and electromagnetic enhancement synergistically enabling MXenes with glorious SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 2021;13:1.
Yang LL, Yang Y, Lombardi JR, Peng YS, Huang ZR. Cost switch enhancement within the floor -enhanced Raman scattering of Ta 2 O 5 superstructures. Appl Surf Sci. 2020;520:146325.
Hugall JT, Baumberg JJ, Mahajan S. Floor-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl Phys Lett. 2009;95:141111.
Yao GY, Liu QL, Zhao ZY. Functions of localized floor plasmon resonance impact in photocatalysis. Progress in Chemistry. 2019;31:516–35.
Wang ZL, Zong SF, Wang YJ, Li N, Li L, Lu J, Wang ZY, Chen BA, Cui YP. Screening and a number of detection of most cancers exosomes utilizing an SERS-based methodology. Nanoscale. 2018;10:9053–62.
Im H, Shao HL, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490-U219.
Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, Nonaka R, Yamamoto H, Ishii H, Mori M, et al. Extremely-sensitive liquid biopsy of circulating extracellular vesicles utilizing ExoScreen. Nat Commun. 2014;5:8.
Shin H, Jeong H, Park J, Hong S, Choi Y. Correlation between cancerous exosomes and protein markers primarily based on surface-enhanced Raman spectroscopy (SERS) and principal element evaluation (PCA). ACS Sens. 2018;3:2637–43.
Park J, Hwang M, Choi B, Jeong H, Jung JH, Kim HK, Hong S, Park JH, Choi Y. Exosome classification by sample evaluation of surface-enhanced raman spectroscopy information for lung most cancers prognosis. Anal Chem. 2017;89:6695–701.
Zong SF, Wang L, Chen C, Lu J, Zhu D, Zhang YZ, Wang ZY, Cui YP. Facile detection of tumor-derived exosomes utilizing magnetic nanobeads and SERS nanoprobes. Anal Strategies. 2016;8:5001–8.
Pang YF, Shi JM, Yang XS, Wang CW, Solar ZW, Xiao R. Customized detection of circling exosomal PD-L1 primarily based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens Bioelectron. 2020;148:9.
Hao R, You H, Zhu J, Chen T, Fang J. “Burning Lamp”-like sturdy molecular enrichment for ultrasensitive plasmonic nanosensors. ACS Sens. 2020;5:781–8.
Luo X, Pan R, Cai M, Liu W, Chen C, Jiang G, Hu X, Zhang H, Zhong M. Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform through localizable evaporation enrichment. Sensors Actuators B: Chem. 2021;326:128826.
Osawa M, Matsuda N, Yoshii Okay, Uchida I. Cost switch resonance Raman course of in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem. 1994;98:12702–7.
Cong S, Liu X, Jiang Y, Zhang W, Zhao Z. Floor enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation. 2020;1:100051.
Lombardi JR, Birke RL. A unified view of surface-enhanced Raman scattering. Acc Chem Res. 2009;42:734–42.
Lombardi JR, Birke RL. A unified strategy to surface-enhanced Raman spectroscopy. J Phys Chem. 2008;112:5605–17.
Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46:4042–76.
Campion A, Kambhampati P. Floor-enhanced Raman scattering. Chem Soc Rev. 1998;27:241–50.
Itoh T, Yamamoto YS, Ozaki Y. Plasmon-enhanced spectroscopy of absorption and spontaneous emissions defined utilizing cavity quantum optics. Chem Soc Rev. 2017;46:3904–21.
Yamamoto YS, Itoh T. Why and the way do the shapes of surface-enhanced Raman scattering spectra change? Latest progress from mechanistic research. J Raman Spectrosc. 2016;47:78–88.
Lombardi JR, Birke RL, Lu TH, Xu J. Cost-transfer idea of floor enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys. 1986;84:4174–80.
Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, et al. Current and way forward for surface-enhanced Raman scattering. ACS Nano. 2020;14:28–117.
Hayashi S, Koh R, Ichiyama Y, Yamamoto Okay. Proof for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys Rev Lett. 1988;60:1085–8.
Wang YF, Zhang JH, Jia HY, Li MJ, Zeng JB, Yang B, Zhao B, Xu WQ, Lombardi JR. Mercaptopyridine surface-functionalized CdTe quantum dots with enhanced Raman scattering properties. J Phys Chem. 2008;112:996–1000.
Tao L, Chen Okay, Chen ZF, Cong CX, Qiu CY, Chen JJ, Wang XM, Chen HJ, Yu T, Xie WG, et al. 1T ’ on-ftransition steel telluride atomic layers for plasmree SERS at femtomolar ranges. J Am Chem Soc. 2018;140:8696–704.
Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.
Lan LL, Gao YM, Fan XC, Li MZ, Hao Q, Qiu T. The origin of ultrasensitive SERS sensing past plasmonics. Frontiers of Physics. 2021;16:1.
Alessandri I. Enhancing Raman scattering with out plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators. J Am Chem Soc. 2013;135:5541–4.
Bontempi N, Vassalini I, Danesi S, Alessandri I. ZORRO: zirconium oxide resonators for all-in-one Raman and whispering-gallery-mode optical sensing. Chem Commun. 2017;53:10382–5.
Ji W, Li LF, Track W, Wang XN, Zhao B, Ozaki Y. Enhanced Raman scattering by ZnO superstructures: synergistic impact of cost switch and mie resonances. Angew Chem Int Edn. 2019;58:14452–6.
Zhang X, Chu Y, Yang H, Zhao Okay, Li J, Du H, She P, Deng A. Ultrasensitive and particular detection of salbutamol in swine feed, meat, and urine samples by a aggressive immunochromatographic check built-in with surface-enhanced Raman scattering. Meals Anal Strategies. 2016;9:3396–406.
Seol ML, Choi SJ, Baek DJ, Park TJ, Ahn JH, Lee SY, Choi YK. A nanoforest construction for sensible surface-enhanced Raman scattering substrates. Nanotechnology. 2012;23: 095301.
He L, Haynes CL, Diez-Gonzalez F, Labuza TP. Fast detection of a international protein in milk utilizing IMS-SERS. J Raman Spectrosc. 2011;42:1428–34.
Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C. Floor-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem. 2010;82:2766–72.
Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J. Simultaneous detection of twin prostate particular antigens utilizing surface-enhanced Raman scattering-based immunoassay for correct prognosis of prostate most cancers. ACS Nano. 2017;11:4926–33.
Du YY, Liu HM, Tian YR, Gu CJ, Zhao ZQ, Zeng SW, Jiang T. Recyclable SERS-based immunoassay guided by photocatalytic efficiency of Fe3O4@TiO2@Au nanocomposites. Biosensors-Basel. 2020;10:25.
Cuesta AM, Sanchez-Martin D, Sanz L, Bonet J, Compte M, Kremer L, Blanco FJ, Oliva B, Alvarez-Vallina L. In Vivo Tumor Focusing on and Imaging with Engineered Trivalent Antibody Fragments Containing Collagen-Derived Sequences. PLoS One. 2009;4:e5381.
Wright D, Usher L. Multivalent binding within the design of bioactive compounds. Curr Org Chem. 2001;5:1107–31.
Lee M, Kim H, Kim E, Yi SY, Hwang SG, Yang S, Lim EK, Kim B, Jung J, Kang T. Multivalent antibody-nanoparticle conjugates to reinforce the sensitivity of surface-enhanced Raman scattering-based immunoassays. ACS Appl Mater Interfaces. 2018;10:37829–34.
Kho KW. Frequency shifts in SERS for biosensing. ACS Nano. 2012;6:4892–902.
Yaseen T, Pu H, Solar D-W. Functionalization methods for bettering SERS substrates and their functions in meals security analysis: a assessment of latest analysis traits. Tendencies Meals Sci Technol. 2018;72:162–74.
Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287:820–5.
Brody ENWM, Smith JD, Jayasena S, Zichi D, Gold L. Using aptamers in massive arrays for molecular diagnostics. Mol Diagn. 1999;4:381–8.
Juewen Liu ZC, Yi Lu. Useful nucleic acid sensors. Chem Rev. 2009;109:1948–98.
Bell SEJ, Charron G, Cortes E, Kneipp J, de la Chapelle ML, Langer J, Prochazka M, Tran V, Schlucker S. In direction of dependable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical apply. Angew Chem Int Ed Engl. 2020;59:5454–62.
Wu S, Duan N, He C, Yu Q, Dai S, Wang Z. Floor-enhanced Raman spectroscopic-based aptasensor for Shigella sonnei utilizing a dual-functional steel complex-ligated gold nanoparticles dimer. Colloids Surf B Biointerfaces. 2020;190:110940.
Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies. ACS Appl Mater Interfaces. 2021;13:6545–56.
Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ. A New aptameric biosensor for cocaine primarily based on surface-enhanced Raman scattering spectroscopy. Chem Eur J. 2008;14:8374–82.
Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E. SERS-based colloidal aptasensors for quantitative willpower of influenza virus. Int J Mol Sci. 1842;2021:22.
Wu Z. AuNP tetramer-based aptasensor for SERS sensing of oxytetracycline. Meals Anal Strategies. 2019;12:1121–7.
Pan H, Dong Y, Gong L, Zhai J, Track C, Ge Z, Su Y, Zhu D, Chao J, Su S, et al. Sensing gastric most cancers exosomes with MoS2-based SERS aptasensor. Biosens Bioelectron. 2022;215:114553.
Liu L, Shangguan CJ, Guo JL, Ma KJ, Jiao SL, Yao Y, Wang JQ. Ultrasensitive SERS Detection of Most cancers-Associated miRNA-182 by MXene/MoS2@AuNPs with Controllable Morphology and Optimized Self-Inner Requirements. Superior Optical Supplies. 2020;8:2001214.
Li DL, Yu HH, Guo ZY, Li ST, Li Y, Guo YX, Zhong HQ, Xiong HL, Liu ZM. SERS evaluation of carcinoma-associated fibroblasts in a tumor microenvironment primarily based on focused 2D nanosheets. Nanoscale. 2020;12:2133–41.
Liu J, Zheng TT, Tian Y. Functionalized h-BN nanosheets as a theranostic platform for SERS real-time monitoring of microRNA and photodynamic remedy. Angewandte Chem Int Edn. 2019;58:7757–61.
Hughes AB. Amino acids, peptides and proteins in natural chemistry, evaluation and performance of amino acids and peptides. Hoboken: John Wiley & Sons; 2013.
Negahdary M, Sattarahmady N, Heli H. Advances in prostate particular antigen biosensors-impact of nanotechnology. Clin Chim Acta. 2020;504:43–55.
Wei Xie LW, Zhang Yuying. Nuclear focused nanoprobe for single residing cell detection by surface-enhanced Raman scattering. Bioconjugate Chem. 2009;20:768–73.
Lee C, Carney R, Lam Okay, Chan JW. SERS evaluation of selectively captured exosomes utilizing an integrin-specific peptide ligand. J Raman Spectrosc. 2017;48:1771–6.
Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJ, Nie S, Shin DM. Detection of circulating tumor cells in human peripheral blood utilizing surface-enhanced Raman scattering nanoparticles. Most cancers Res. 2011;71:1526–32.
Solar Y, Wang Y, Lu W, Liu C, Ge S, Zhou X, Bi C, Cao X. A novel surface-enhanced Raman scattering probe primarily based on Au nanoboxes for dynamic monitoring of caspase-3 throughout cervical most cancers cell apoptosis. J Mater Chem B. 2021;9:381–91.
Michaels AMMN, Brus LE. Floor enhanced Raman spectroscopy of particular person rhodamine 6G molecules on massive Ag nanocrystals. J Am Chem Soc. 1999;121:9932–9.
Di-Yan Wang T-ST, Yi-Chou Wu. Silver-nanoparticle-conjugated polypeptide brushes for surface-enhanced Raman scattering. J Phys Chem C. 2009;113:13498–504.
Domin H, Święch D, Piergies N, Pięta E, Kim Y, Proniewicz E. Characterization of the floor geometry of acetyl-[Leu 28,31 ]-NPY(24–36), a selective Y 2 receptor agonist, onto the Ag and Au surfaces. Vib Spectr. 2016;85:1–6.
Li T, Huang T, Guo C, Wang A, Shi X, Mo X, Lu Q, Solar J, Hui T, Tian G, et al. Genomic variation, origin tracing, and vaccine growth of SARS-CoV-2: a scientific assessment. Innovation. 2021;2:100116.
Faizo AA, Alandijany TA, Abbas AT, Sohrab SS, El-Kafrawy SA, Tolah AM, Hassan AM, Azhar EI. A dependable oblique ELISA protocol for detection of human antibodies directed to SARS-CoV-2 NP protein. Diagnostics. 2021;11:825.
Zelyas N, Pabbaraju Okay, Croxen MA, Lynch T, Buss E, Murphy SA, Shokoples S, Wong A, Kanji JN, Tipples G. Precision response to the rise of the SARS-CoV-2 B.1.1.7 variant of concern by combining novel PCR assays and genome sequencing for fast variant detection and surveillance. Microbiol Spectr. 2021;9:e00315.
Bezerra MF, Machado LC, De Carvalho V, Docena C, Brandao-Filho SP, Ayres CFJ, Paiva MHS, Wallau GL. A Sanger-based strategy for scaling up screening of SARS-CoV-2 variants of curiosity and concern. Infect Genet Evol. 2021;92:104910.
Dong Y, Zhao Y, Li S, Wan Z, Lu R, Yang X, Yu G, Reboud J, Cooper JM, Tian Z, Zhang C. Multiplex, real-time, point-of-care RT-LAMP for SARS-CoV-2 detection utilizing the HFman probe. ACS Sens. 2022;7:730–9.
Yang J, Hu X, Wang W, Yang Y, Zhang X, Fang W, Zhang L, Li S, Gu B. RT-LAMP assay for fast detection of the R203M mutation in SARS-CoV-2 delta variant. Emerg Microbes Infect. 2022;11:978–87.
Ooi KH, Liu MM, Tay JWD, Teo SY, Kaewsapsak P, Jin S, Lee CK, Hou J, Maurer-Stroh S, Lin W, et al. An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides allow sturdy and fast COVID-19 testing. Nat Commun. 2021;12:1739.
He C, Lin C, Mo G, Xi B, Li AA, Huang D, Wan Y, Chen F, Liang Y, Zuo Q, et al. Fast and correct detection of SARS-CoV-2 mutations utilizing a Cas12a-based sensing platform. Biosens Bioelectron. 2022;198: 113857.
Lim JY, Nam JS, Yang SE, Shin H, Jang YH, Bae GU, Kang T, Lim KI, Choi Y. Identification of newly rising influenza viruses by surface-enhanced raman spectroscopy. Anal Chem. 2015;87:11652–9.
Jahanshahi P, Zalnezhad E, Sekaran SD, Adikan FRM. Fast immunoglobulin M-based dengue diagnostic check utilizing floor plasmon resonance biosensor. Sci Rep. 2014;4:3851.
Inci F, Tokel O, Wang SQ, Gurkan UA, Tasoglu S, Kuritzkes DR, Demirci U. Nanoplasmonic quantitative detection of intact viruses from unprocessed complete blood. ACS Nano. 2013;7:4733–45.
Tsang MK, Ye WW, Wang GJ, Li JM, Yang M, Hao JH. Ultrasensitive detection of ebola virus oligonucleotide primarily based on upconversion nanoprobe/nanoporous membrane system. ACS Nano. 2016;10:598–605.
Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG, Fassero LA, Gates Okay, Tandon R, Chandra Ray P. The fast prognosis and efficient inhibition of coronavirus utilizing spike antibody connected gold nanoparticles. Nanoscale Adv. 2021;3:1588–96.
Shrivastav AM, Cvelbar U, Abdulhalim I. A complete assessment on plasmonic-based biosensors utilized in viral diagnostics. Commun Biol. 2021;4:70.
Kim Okay, Kashefi-Kheyrabadi L, Joung Y, Kim Okay, Dang HJ, Chavan SG, Lee MH, Choo J. Latest advances in delicate surface-enhanced Raman scattering-based lateral move assay platforms for point-of-care diagnostics of infectious illnesses. Sens Actuators B Chem. 2021;329:129214.
Chen H, Park SG, Choi N, Kwon HJ, Kang T, Lee MK, Choo J. Delicate detection of SARS-CoV-2 utilizing a SERS-based aptasensor. Acs Sensors. 2021;6:2378–85.
Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon H-J, Lee I-C, Kim S, et al. Floor-enhanced Raman scattering-based immunoassay for extreme acute respiratory syndrome coronavirus 2. Biosens Bioelectron. 2022;202:114008.
Huang JL, Wen JX, Zhou MJ, Ni S, Le W, Chen G, Wei L, Zeng Y, Qi DJ, Pan M, et al. On-site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.
Paria D, Kwok KS, Raj P, Zheng P, Gracias DH, Barman I. Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates. Nano Lett. 2022;22:3620.
Xu MM, Li YY, Lin CL, Peng YS, Zhao SA, Yang X, Yang Y. Latest advances of consultant optical biosensors for fast and delicate diagnostics of SARS-CoV-2. Biosensors-Basel. 2022;12:862.
La Rosa G, Mancini P, Bonanno Ferraro G, Veneri C, Iaconelli M, Lucentini L, Bonadonna L, Brusaferro S, Brandtner D, Fasanella A, et al. Fast screening for SARS-CoV-2 variants of concern in scientific and environmental samples utilizing nested RT-PCR assays focusing on key mutations of the spike protein. Water Res. 2021;197:117104.
Oliveira GS, Silva-Flannery L, Silva JF, Siza C, Esteves RJ, Marston BJ, Morgan J, Plucinski M, Roca TP, Silva AMP, et al. Energetic surveillance and early detection of neighborhood transmission of SARS-CoV-2 Mu variant (B.1.621) within the Brazilian Amazon. J Med Virol. 2022;94:3410.
Del Cano R, Garcia-Mendiola T, Garcia-Nieto D, Alvaro R, Luna M, Iniesta HA, Coloma R, Diaz CR, Milan-Rois P, Castellanos M, et al. Amplification-free detection of SARS-CoV-2 utilizing gold nanotriangles functionalized with oligonucleotides. Mikrochim Acta. 2022;189:171.
Durmus C, Balaban Hanoglu S, Harmanci D, Moulahoum H, Tok Okay, Ghorbanizamani F, Sanli S, Zihnioglu F, Evran S, Cicek C, et al. Indiscriminate SARS-CoV-2 multivariant detection utilizing magnetic nanoparticle-based electrochemical immunosensing. Talanta. 2022;243:123356.
Ohki S, Imamura T, Higashimura Y, Matsumoto Okay, Mori M. Similarities and variations within the conformational stability and reversibility of ORF8, an adjunct protein of SARS-CoV-2, and its L84S variant. Biochem Biophys Res Commun. 2021;563:92–7.
Track Y, He P, Rodrigues AL, Datta P, Tandon R, Bates JT, Bierdeman MA, Chen C, Dordick J, Zhang F, Linhardt RJ. Anti-SARS-CoV-2 exercise of rhamnan sulfate from monostroma nitidum. Mar Medicine. 2021;19:685.
Zhang F, He P, Rodrigues AL, Jeske W, Tandon R, Bates JT, Bierdeman MA, Fareed J, Dordick J, Linhardt RJ. Potential anti-SARS-CoV-2 exercise of pentosan polysulfate and mucopolysaccharide polysulfate. Prescribed drugs. 2022;15:258.
Hojjat Jodaylami M, Djaileb A, Ricard P, Lavallee E, Cellier-Goetghebeur S, Parker MF, Coutu J, Stuible M, Gervais C, Durocher Y, et al. Cross-reactivity of antibodies from non-hospitalized COVID-19 optimistic people towards the native, B.1.351, B.1.617.2, and P1 SARS-CoV-2 spike proteins. Sci Rep. 2021;11:21601.
Peng Y, Lin C, Li Y, Gao Y, Wang J, He J, Huang Z, Liu J, Luo X, Yang Y. Figuring out infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary impact. Matter. 2022;5:694–709.
Sanchez JE, Jaramillo SA, Settles E, Velazquez Salazar JJ, Lehr A, Gonzalez J, Rodríguez Aranda C, Navarro-Contreras HR, Raniere MO, Harvey M, et al. Detection of SARS-CoV-2 and its S and N proteins utilizing floor enhanced Raman spectroscopy. RSC Adv. 2021;11:25788–94.
Lopez-Cantu DO, Wang XC, Carrasco-Magallanes H, Afewerki S, Zhang XC, Bonventre JV, Ruiz-Esparza GU. From bench to the clinic: the trail to translation of nanotechnology-enabled mRNA SARS-CoV-2 Vaccines. Nano-Micro Lett. 2022;14:41.
Li YY, Lin CL, Peng YS, He J, Yang Y. Excessive-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. Sens Actuators B Chem. 2022;365:131974.
Zhang DY, Zhang XL, Ma R, Deng SQ, Wang XZ, Wang XQ, Zhang X, Huang X, Liu Y, Li GH, et al. Extremely-fast and onsite interrogation of extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in waters through floor enhanced Raman scattering (SERS). Water Res. 2021;200:117243.
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.
Leong SX, Leong YX, Tan EX, Sim HYF, Koh CSL, Lee YH, Chong C, Ng LS, Chen JRT, Pang DWC, et al. Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of coronavirus illness 2019 (COVID-19) beneath 5 min. ACS Nano. 2022;16:2629–39.
Li JR, Wuethrich A, Edwardraja S, Lobb RJ, Puttick S, Rose S, Howard CB, Trau M. Amplification-Free SARS-CoV-2 detection utilizing nanoyeast-scFv and ultrasensitive plasmonic nanobox-integrated nanomixing microassay. Anal Chem. 2021;93:10251–60.
Zhang M, Li X, Pan J, Zhang Y, Zhang L, Wang C, Yan X, Liu X, Lu G. Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva utilizing SERS-based biosensor. Biosens Bioelectron. 2021;190:113421.
Payne TD, Klawa SJ, Jian T, Kim SH, Papanikolas MJ, Freeman R, Schultz ZD. Catching COVID: engineering peptide-modified surface-enhanced Raman spectroscopy sensors for SARS-CoV-2. ACS Sens. 2021;6:3436–44.
Daoudi Okay, Ramachandran Okay, Alawadhi H, Boukherroub R, Dogheche E, Khakani MAE, Gaidi M. Extremely-sensitive and quick optical detection of the spike protein of the SARS-CoV-2 utilizing AgNPs/SiNWs nanohybrid primarily based sensors. Surfaces and Interfaces. 2021;27:101454.
Zavyalova E, Ambartsumyan O, Zhdanov G, Gribanyov D, Gushchin V, Tkachuk A, Rudakova E, Nikiforova M, Kuznetsova N, Popova L, et al. SERS-based aptasensor for fast quantitative detection of SARS-CoV-2. Nanomaterials. 2021;11:1394.
Park S, Jeon CS, Choi N, Moon JI, Lee KM, Pyun SH, Kang T, Choo J. Delicate and reproducible detection of SARS-CoV-2 utilizing SERS-based microdroplet sensor. Chem Eng J. 2022;446:137085.
Hwang J, Lee S, Choo J. Utility of a SERS-based lateral move immunoassay strip for the fast and delicate detection of staphylococcal enterotoxin B. Nanoscale. 2016;8:11418–25.
Srivastav S, Dankov A, Adanalic M, Grzeschik R, Tran V, Pagel-Wieder S, Gessler F, Spreitzer I, Scholz T, Schnierle B, et al. Fast and delicate SERS-based lateral move check for SARS-CoV2-specific IgM/IgG antibodies. Anal Chem. 2021;93:12391–9.
Lee M, Lee S, Lee J-H, Lim H-W, Seong GH, Lee EK, Chang S-I, Oh CH, Choo J. Extremely reproducible immunoassay of most cancers markers on a gold-patterned microarray chip utilizing surface-enhanced Raman scattering imaging. Biosens Bioelectron. 2011;26:2135–41.
Lee M, Lee Okay, Kim KH, Oh KW, Choo J. SERS-based immunoassay utilizing a gold array-embedded gradient microfluidic chip. Lab Chip. 2012;12:3720–7.
Santiago-Cordoba MA, Romano PR, MacKay A, Demirel MC, Ieee: Raman Based mostly Hepatocellular Carcinoma Biomarker Detection. In thirty third Annual Worldwide Convention of the IEEE Engineering-in-Medication-and-Biology-Society (EMBS); 2011 Aug 30-Sep 03; Boston, MA. 2011: 3672-3675.
Khondakar KR, Dey S, Wuethrich A, Ibn Sina AA, Trau M. Towards customized most cancers remedy: from diagnostics to remedy monitoring in miniaturized electrohydrodynamic techniques. Acc Chem Res. 2019;52:2113–23.
Hammarstrom S. The carcinoembryonic antigen (CEA) household: buildings, advised features and expression in regular and malignant tissues. Semin Most cancers Biol. 1999;9:67–81.
Thomson DMP, Krupey J, Freedman SO, Gold P. The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci USA. 1969;64:161–0.
Chon H, Lee S, Son SW, Oh CH, Choo J. Extremely delicate immunoassay of lung most cancers marker carcinoembryonic antigen utilizing surface-enhanced Raman scattering of hallow gold nanospheres. Anal Chem. 2009;81:3029–34.
Xue TY, Liang WY, Li YW, Solar YH, Xiang YJ, Zhang YP, Dai ZG, Duo YH, Wu LM, Qi Okay, et al. Ultrasensitive detection of miRNA with an antimonene-based floor plasmon resonance sensor. Nat Commun. 2019. https://doi.org/10.1038/s41467-018-07947-8.
Zhou W, Tian YF, Yin BC, Ye BC. Simultaneous Floor-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem. 2017;89:6121–9.
Pang YF, Wang CW, Wang J, Solar ZW, Xiao R, Wang SQ. Fe3O4@Ag magnetic nanoparticles for microRNA seize and duplex-specific nuclease sign amplification primarily based SERS detection in most cancers cells. Biosens Bioelectron. 2016;79:574–80.
Pang YF, Wang CG, Lu LC, Wang CW, Solar ZW, Xiao R. Twin-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic most cancers. Biosens Bioelectron. 2019;130:204–13.
Dharmalingam P, Venkatakrishnan Okay, Tan B. An atomic-defect enhanced Raman scattering (DERS) quantum probe for molecular degree detection—breaking the SERS barrier. Appl Mater Right this moment. 2019;16:28–41.
Reuter CWM, Morgan MA, Eckardt A. Focusing on EGF-receptor-signalling in squamous cell carcinomas of the top and neck. Br J Most cancers. 2007;96:408–16.
Qiu CG, Zhang W, Zhou YH, Cui HW, Xing YL, Yu FB, Wang R. Extremely delicate surface-enhanced Raman scattering (SERS) imaging for phenotypic prognosis and therapeutic analysis of breast most cancers. Chem Eng J. 2023;459:141502.
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Most cancers. 2006;6:688–701.
Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Younger AN, Wang MD, Nie S. In vivo tumor focusing on and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and mates. J Cell Biol. 2013;200:373–83.
Kalluri R, LeBleu VS. The biology, perform, and biomedical functions of exosomes. Science. 2020;367:640-+.
Li TD, Zhang R, Chen H, Huang ZP, Ye X, Wang H, Deng AM, Kong JL. An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based prognosis and classification of pancreatic most cancers. Chem Sci. 2018;9:5372–82.
Fan CC, Zhao N, Cui Okay, Chen GX, Chen YZ, Wu WW, Li QY, Cui YN, Li RK, Xiao ZY. Ultrasensitive exosome detection by modularized SERS labeling for postoperative recurrence surveillance. Acs Sensors. 2021;6:3234–41.
Lee JU, Kim WH, Lee HS, Park KH, Sim SJ. Quantitative and particular detection of exosomal miRNAs for correct prognosis of breast most cancers utilizing a surface-enhanced Raman scattering sensor primarily based on plasmonic head-flocked gold nanopillars. Small. 2019;15:184968.
Dong SL, Wang YH, Liu ZQ, Zhang WW, Yi KZ, Zhang XG, Zhang XL, Jiang CZ, Yang SK, Wang FB, Xiao XH. Beehive-inspired macroporous SERS probe for most cancers detection by capturing and analyzing exosomes in plasma. ACS Appl Mater Interfaces. 2020;12:5136–46.
Lin C, Liang S, Peng Y, Lengthy L, Li Y, Huang Z, Lengthy NV, Luo X, Liu J, Li Z, Yang Y. Visualized SERS imaging of single molecule by Ag/black phosphorus nanosheets. Nano Micro Lett. 2022;14:75.
Oliveira-Rodriguez M, Lopez-Cobo S, Reyburn HT, Costa-Garcia A, Lopez-Martin S, Yanez-Mo M, Cernuda-Morollon E, Paschen A, Vales-Gomez M, Blanco-Lopez MC. Growth of a fast lateral move immunoassay check for detection of exosomes beforehand enriched from cell tradition medium and physique fluids. J Extracell Vesicles. 2016;5:31803.
He F, Wang J, Yin BC, Ye BC. Quantification of exosome primarily based on a copper-mediated sign amplification technique. Anal Chem. 2018;90:8072–9.
Zhu L, Wang Okay, Cui J, Liu H, Bu XL, Ma HL, Wang WZ, Gong H, Lausted C, Hood L, et al. Label-free quantitative detection of tumor-derived exosomes by floor plasmon resonance imaging. Anal Chem. 2014;86:8857–64.
Boriachek Okay, Islam MN, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJA. Quantum dot-based delicate detection of illness particular exosome in serum. Analyst. 2017;142:2211–9.
Wang J, Xie HY, Ding CF. Designed Co-DNA-locker and ratiometric SERS sensing for correct detection of exosomes primarily based on gold nanorod arrays. ACS Appl Mater Interfaces. 2021;13:32837–44.
Tian YF, Ning CF, He F, Yin BC, Ye BC. Extremely delicate detection of exosomes by SERS utilizing gold nanostar@ Raman reporter@ nanoshell buildings modified with a bivalent cholesterollabeled DNA anchor. Analyst. 2018;143:4915–22.
Lin CL, Liang SS, Li YY, Peng YS, Huang ZR, Li ZY, Yang Y, Luo XY. Localized plasmonic sensor for direct figuring out lung and colon most cancers from the blood. Biosens Bioelectron. 2022;211:114372.
Keshavarz M, Tan B, Venkatakrishnan Okay. Label-Free SERS quantum semiconductor probe for molecular-level and in vitro mobile detection: a noble-metal-free methodology. ACS Appl Mater Interfaces. 2018;10:34886–904.
Dharmalingam P, Venkatakrishnan Okay, Tan B. Probing most cancers metastasis at a single-cell degree with a raman-functionalized anionic probe. Nano Lett. 2020;20:1054–66.
Ganesh S, Venkatakrishnan Okay, Tan B. Quantum scale natural semiconductors for SERS detection of DNA methylation and gene expression. Nat Commun. 2020;11:1135.
Liu YR, Gao ZB, Chen M, Tan Y, Chen F. Enhanced Raman scattering of CuPc movies on imperfect WSe2 monolayer correlated to exciton and charge-transfer resonances. Adv Funct Mater. 2018;28:1805710.
Kaminska A, Witkowska E, Winkler Okay, Dziecielewski I, Weyher JL, Waluk J. Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron. 2015;66:461–7.
Liu Y, Ren G, Du R, Zhang Y, Tan T, Wang Y, Yao J. Research of surface-enhanced Raman scattering of InAs particles of subwavelength apertures at terahertz frequencies. Mod Phys Lett B. 2015;29:1550197.
Islam SK, Sohel MA, Lombardi JR. Coupled exciton and charge-transfer resonances within the Raman enhancement of phonon modes of CdSe quantum dots (QDs). J Phys Chem C. 2014;118:19415–21.
Wang X, Li J, Gao X, Shen Y, Xie A. Ordered CdSe-sensitized TiO2 inverse opal movie as multifunctional surface-enhanced Raman scattering substrate. Appl Surf Sci. 2019;463:357–62.
Zhai Y, Zheng Y, Ma Z, Cai Y, Wang F, Guo X, Wen Y, Yang H. Synergistic enhancement impact for enhancing Raman detection sensitivity of antibiotics. ACS Sens. 2019;4:2958–65.
Wang Y, Solar Z, Hu H, Jing S, Zhao B, Xu W, Zhao C, Lombardi JR. Raman scattering examine of molecules adsorbed on ZnS nanocrystals. J Raman Spectrosc. 2007;38:34–8.
Islam SK, Tamargo M, Moug R, Lombardi JR. Floor-enhanced Raman scattering on a chemically etched ZnSe floor. J Phys Chem C. 2013;117:23372–7.
Peng Y, Lin C, Tang M, Yang L, Yang Y, Liu J, Huang Z, Li Z. Niobium pentoxide ultra-thin nanosheets: a photocatalytic degradation and recyclable surface-enhanced Raman scattering substrate. Appl Surf Sci. 2020;509:145376.
Yang L, Peng Y, Yang Y, Liu J, Huang H, Yu B, Zhao J, Lu Y, Huang Z, Li Z, Lombardi JR. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance impact. Adv Sci. 2019;6:1900310.
Gu J, Fahrenkrug E, Maldonado S. Evaluation of the electrodeposition and floor chemistry of CdTe, CdSe, and CdS skinny movies by substrate-overlayer surface-enhanced Raman spectroscopy. Langmuir. 2014;30:10344–53.
Liang P, Cao Y, Dong Q, Wang D, Zhang JS, Yu Z, Ye J, Zou M. A balsam pear-shaped CuO SERS substrate with extremely chemical enhancement for pesticide residue detection. Mikrochim Acta. 2020;187:335.
Shi Z, Wang T, Lin H, Wang X, Ding J, Shao M. Wonderful surface-enhanced Raman scattering (SERS) primarily based on AgFeO2 semiconductor nanoparticles. Nanoscale. 2013;5:10029–33.
Lin J, Liang L, Ling X, Zhang S, Mao N, Zhang N, Sumpter BG, Meunier V, Tong L, Zhang J. Enhanced Raman scattering on in-plane anisotropic layered supplies. J Am Chem Soc. 2015;137:15511–7.
Wang X, Li J, Shen Y, Xie A. An assembled ordered W18O49 nanowire movie with excessive SERS sensitivity and stability for the detection of RB. Appl Surf Sci. 2020;504:144073.
Pan J, Li M, Luo Y, Wu H, Zhong L, Wang Q, Li G. Synthesis and SERS exercise of V2O5 nanoparticles. Appl Surf Sci. 2015;333:34–8.
Li W, Zamani R, Rivera Gil P, Pelaz B, Ibanez M, Cadavid D, Shavel A, Alvarez-Puebla RA, Parak WJ, Arbiol J, Cabot A. CuTe nanocrystals: form and measurement management, plasmonic properties, and use as SERS probes and photothermal brokers. J Am Chem Soc. 2013;135:7098–101.
Wang X, Shi W, She G, Mu L. Utilizing Si and Ge nanostructures as substrates for surface-enhanced Raman scattering primarily based on photoinduced cost switch mechanism. J Am Chem Soc. 2011;133:16518–23.
Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S. Floor-enhanced Raman scattering spectra of adsorbates on Cu(2)O nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale. 2013;5:2784–9.
Wang Y, Wang Y, Gao Y, Solar Z, Zhao C, Hu H, Xu W, Wang Z, Zhao B. Floor enhanced Raman spectroscopy of 4-mercaptopyridine molecules on Pb3 O4 nanoparticles1. Chem Res Chin Univ. 2006;22:388–9.
Wang R, Yan X, Ge B, Zhou J, Wang M, Zhang L, Jiao T. Facile preparation of self-assembled black phosphorus-dye composite movies for chemical gasoline sensors and surface-enhanced Raman scattering performances. ACS Maintain Chem Eng. 2020;8:4521–36.
Tuning chemical enhancement of SERS by Controlling the chemical discount of graphene oxide nanosheets.
Muehlethaler C, Considine CR, Menon V, Lin W-C, Lee Y-H, Lombardi JR. Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics. 2016;3:1164–9.
Ge YC, Wang F, Yang Y, Xu Y, Ye Y, Cai Y, Zhang QW, Cai SY, Jiang DF, Liu XH, et al. Atomically skinny TaSe2 movie as a high-performance substrate for surface-enhanced raman scattering. Small. 2022;18:2107027.
Ye Y, Yi W, Liu W, Zhou Y, Bai H, Li J, Xi G. Outstanding surface-enhanced Raman scattering of extremely crystalline monolayer Ti3C2 nanosheets. Sci China Mater. 2020;63:794–805.
Tao L, Chen Okay, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, et al. 1T’ transition steel telluride atomic layers for plasmon-free SERS at Femtomolar ranges. J Am Chem Soc. 2018;140:8696–704.
Two-Dimensional Titanium Nitride (Ti2N) MXene synthesis, characterization, and potential software as surface-enhanced Raman scattering substrate.
Lv Q, Tan JY, Wang ZJ, Yu LX, Liu BL, Lin JH, Li J, Huang ZH, Kang FY, Lv RT. Femtomolar-Degree Molecular Sensing of Monolayer Tungsten Diselenide Induced by Heteroatom Doping with Lengthy-Time period Stability. Adv Funct Mater. 2022;32:2200273.
Haldavnekar R, Venkatakrishnan Okay, Tan B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro most cancers detection. Nat Commun. 2018;9:3065.
Thevenot P, Cho J, Wavhal D, Timmons RB, Tang LP. Floor chemistry influences most cancers killing impact of TiO2 nanoparticles. Nanomed Nanotechnol Biol Med. 2008;4:226–36.
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: in direction of implementation of circulating tumour DNA. Nat Rev Most cancers. 2017;17:223–38.
Dey S, Koo KM, Wang ZR, Sina AI, Wuethrich A, Trau M. An built-in multi-molecular sensor for simultaneous BRAF(V600E) protein and DNA single level mutation detection in circulating tumour cells. Lab Chip. 2019;19:738–48.
Du Z, Qi YC, He J, Zhong DN, Zhou M. Latest advances in functions of nanoparticles inSERSin vivo imaging. Wiley Interdis Rev Nanomed Nanobiotechnol. 2021;13:e1672.
Li YY, Wei QL, Ma F, Li X, Liu FY, Zhou M. Floor-enhanced Raman nanoparticles for tumor theranostics functions. Acta Pharm Sinica B. 2018;8:349–59.
Andreou C, Kishore SA, Kircher MF. Floor-enhanced Raman spectroscopy: a brand new modality for most cancers imaging. J Nucl Med. 2015;56:1295–9.
Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small residing topics utilizing Raman spectroscopy. Proc Natl Acad Sci USA. 2008;105:5844–9.
Huang HC, Barua S, Sharma G, Dey SK, Rege Okay. Inorganic nanoparticles for most cancers imaging and remedy. J Management Launch. 2011;155:344–57.
Lin L, Bi XY, Gu YQ, Wang F, Ye J. Floor-enhanced Raman scattering nanotags for bioimaging. J Appl Phys. 2021;129:191101.
Zhang YQ, Gu YQ, He J, Thackray BD, Ye J. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat Commun. 2019;2019(10):3905.
Gu YQ, Bi XY, Ye J. Hole-enhanced resonance Raman tags for live-cell imaging. J Mater Chem B. 2020;8:6944–55.
Zhang YM, Chen RY, Liu FG, Miao P, Lin L, Ye J. In Vivo surface-enhanced transmission Raman spectroscopy beneath most permissible publicity: towards photosafe detection of deep-seated tumors. Small Strategies. 2022;26:2201334.
Qiu YY, Zhang YQ, Li MW, Chen GX, Fan CC, Cui Okay, Wan JB, Han AP, Ye J, Xiao ZY. Intraoperative detection and eradication of residual microtumors with gap-enhanced Raman tags. ACS Nano. 2018;12:7974–85.
Zhang YQ, Qiu YY, Lin L, Gu HC, Xiao ZY, Ye J. Ultraphotostable mesoporous silica-coated gap-enhanced Raman tags (GERTs) for high-speed bioimaging. ACS Appl Mater Interfaces. 2017;9:3995–4005.
Wen CC, Wang LP, Liu L, Shen XC, Chen H. Floor-enhanced Raman probes primarily based on gold nanomaterials for in vivo prognosis and imaging. Chem Asian J. 2022;17:e202200014.
Doering WE, Nie SM. Spectroscopic tags utilizing dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem. 2003;75:6171–6.
Jokerst JV, Pohling C, Gambhir SS. Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters. MRS Bull. 2013;38:625–30.
Qian J, Jiang L, Cai FH, Wang D, He SL. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials. 2011;32:1601–10.
Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter Okay, Huang RM, Campos C, Habte F, et al. A mind tumor molecular imaging technique utilizing a brand new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829-U235.
Harmsen S, Huang RM, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, et al. Floor-enhanced resonance Raman scattering nanostars for high-precision most cancers imaging. Sci Transl Med. 2015. https://doi.org/10.1126/scitranslmed.3010633.
Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46:6387–92.
Maeda H, Nakamura H, Fang J. The EPR impact for macromolecular drug supply to stable tumors: Enchancment of tumor uptake, reducing of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Del Rev. 2013;65:71–9.
Maeda H. The hyperlink between an infection and most cancers: tumor vasculature, free radicals, and drug supply to tumors through the EPR impact. Most cancers Sci. 2013;104:779–89.
Maeda H. Vascular permeability in most cancers and an infection as associated to macromolecular drug supply, with emphasis on the EPR impact for tumor-selective drug focusing on. Proc Jpn Acad Sequence B-Phys Biol Sci. 2012;88:53–71.
Pang STR, Yang TX, He LL. Assessment of floor enhanced Raman spectroscopic (SERS) detection of artificial chemical pesticides. Trac-Tendencies in Analytical Chemistry. 2016;85:73–82.
Alsammarraie FK, Lin MS. Utilizing standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk. J Agric Meals Chem. 2017;65:666–74.
Hou RY, Pang S, He LL. In situ SERS detection of multi-class pesticides on plant surfaces. Anal Strategies. 2015;7:6325–30.
He LL, Chen T, Labuza TP. Restoration and quantitative detection of thiabendazole on apples utilizing a floor swab seize methodology adopted by surface-enhanced Raman spectroscopy. Meals Chem. 2014;148:42–6.
Wang P, Wu L, Lu ZC, Li Q, Yin WM, Ding F, Han HY. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and dependable detection of pesticide residues in fruit and veggies. Anal Chem. 2017;89:2424–31.
Zhang Z, Yu QS, Li H, Mustapha A, Lin MS. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and greens. J Meals Sci. 2015;80:N450–8.
Liu B, Zhou P, Liu XM, Solar X, Li H, Lin MS. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Meals Bioprocess Technol. 2013;6:710–8.
Huang SG, Yan W, Liu MH, Hu JP. Detection of difenoconazole pesticides in pak choi by surface-enhanced Raman scattering spectroscopy coupled with gold nanoparticles. Anal Strategies. 2016;8:4755–61.
Wei W, Du YX, Zhang LM, Yang Y, Gao YF. Bettering SERS sizzling spots for on- web site pesticide detection by combining silver nanoparticles with nanowires. J Mater Chem C. 2018;6:8793–803.
Deng D, Lin Q, Li H, Huang Z, Kuang Y, Chen H, Kong J. Fast detection of malachite inexperienced residues in fish utilizing a surface-enhanced Raman scattering-active glass fiber paper ready by in situ discount methodology. Talanta. 2019;200:272–8.
Guo PZ, Sikdar D, Huang XQ, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng WL. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale. 2015;7:2862–8.
Hua B, Solar D-W, Pu H, Wei Q. A dynamically optical and extremely secure pNIPAM @ Au NRs nanohybrid substrate for delicate SERS detection of malachite inexperienced in fish fillet. Talanta. 2020;218:121188.
Němeček D, Thomas GJ: Raman spectroscopy in virus construction evaluation. Digital Encyclopedia of utilized physics; 2009.
Tuma R, Thomas GJ. Raman spectroscopy of viruses. Hoboken: Wiley; 2006.
Nemecek D, Stepanek J, Thomas GJ Jr. Raman spectroscopy of proteins and nucleoproteins. Present Protocols Protein Sci. 2013;71:17.
Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992;1120:123–43.
Pelton JT, McLean LR. Spectroscopic strategies for evaluation of protein secondary construction. Anal Biochem. 2000;277:167–76.
Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364.
Proniewicza E, Tąta A, Starowicz M, Wójcik A, Pacek J, Molend M. Is the electrochemical or the inexperienced chemistry methodology the optimum methodology for the synthesis of ZnO nanoparticles for functions to organic materials? Characterization and SERS on ZnO. Colloids Surf B Biointerfaces. 2020;00:1–8.
Li S, Zhang Y, Xu J, Li L, Zeng Q, Lin L, Guo Z, Liu Z, Xiong H, Liu S. Noninvasive prostate most cancers screening primarily based on serum surface-enhanced Raman spectroscopy and assist vector machine. Appl Phys Lett. 2014;105:091104.
Ning X, Mu-Hua L, Hai-Chao Y, Shuang-Gen H, Xiao W, Jin-Hui Z, Jian C, Ting W, Wei H, Yi-Xin S. Classification of sulfadimidine and sulfapyridine in duck meat by floor enhanced Raman spectroscopy mixed with principal element evaluation and assist vector machine. Anal Lett. 2020;53:1513–24.
Pereira VR, Pereira DR, de Melo TVKC, Ribas VP, Constantino CJL, Antunes PA, Favareto APA. Sperm high quality of rats uncovered to difenoconazole utilizing classical parameters and surface-enhanced Raman scattering: classification efficiency by machine studying strategies. Environ Sci Pollut Res Int. 2019;26:35253–65.
Tan ZY, Zhang YQ, Thackray BD, Ye J. Enchancment of surface-enhanced Raman scattering detection and imaging by multivariate curve decision strategies. J Appl Phys. 2019;125:173101.
Oliveri P. Class-modelling in meals analytical chemistry: growth, sampling, optimisation and validation points—a tutorial. Anal Chim Acta. 2017;982:9–19.
Cardoso VGK, Poppi RJ. Cleaner and quicker methodology to detect adulteration in cassava starch utilizing Raman spectroscopy and one-class assist vector machine. Meals Management. 2021;125:107917.
Guselnikova O, Trelin A, Skvortsova A, Ulbrich P, Postnikov P, Pershina A, Sykora D, Svorcik V, Lyutakov O. Label-free surface-enhanced Raman spectroscopy with synthetic neural community method for recognition photoinduced DNA harm. Biosens Bioelectron. 2019;145:111718.
Yang YJ, Li H, Jones L, Murray J, Haverstick J, Naikare HK, Mosley YYC, Tripp RA, Ai B, Zhao YP. Fast detection of SARS-CoV-2 RNA in human nasopharyngeal specimens utilizing surface-enhanced raman spectroscopy and deep studying algorithms. Acs Sensors. 2023;8:297.
Track DL, Chen YS, Li J, Wang HF, Ning T, Wang S. A graphical person interface (NWUSA) for Raman spectral processing, evaluation and have recognition. J Biophotonics. 2021;14:e202000456.
Li HP, Ren Y, Yu F, Track DL, Zhu LZ, Yu SB, Jiang SY, Wang S. Raman microspectral examine and classification of the pathological evolution of breast most cancers utilizing each principal element analysis-linear discriminant evaluation and principal element analysis-support vector machine. J Spectr. 2021. https://doi.org/10.1155/2021/5572782.
Chang CC, Lin CJ. LIBSVM: A Library for Assist Vector Machines. Acm Trans Intell Syst Technol. 2011;2:1.
Borzenkov M, Chirico G, D’Alfonso L, Sironi L, Collini M, Cahrini E, Dacarro G, Milanese C, Pallavicini P, Taglietti A, et al. Thermal and chemical stability of thiol bonding on gold nanostars. Langmuir. 2015;31:8081–91.