Panda PK, Verma SK, Suar M. Nanoparticle–organic interactions: the renaissance of bionomics within the myriad nanomedical applied sciences. Nanomedicine. 2021;16(25):2249–54.
Chen Y, Hou S. Latest progress within the impact of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Demise Discov. 2023;9:195.
Yang Y, Liu Y, Tune L, Cui X, Zhou J, Jin G, et al. Iron oxide nanoparticle-based nanocomposites in biomedical utility. Tendencies Biotechnol. 2023;S0167–7799(23):00175.
Sprint S, Das T, Patel P, Panda PK, Suar M, Verma SK. Rising developments within the nanomedicine purposes of functionalized magnetic nanoparticles as novel therapies for acute and persistent illnesses. J Nanobiotechnology. 2022;20(1):393.
Simnani FZ, Singh D, Patel P, Choudhury A, Sinha A, Nandi A, et al. Nanocarrier vaccine therapeutics for international infectious and persistent illnesses. Mater Right this moment. 2023;66:371–408.
Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F. Design and synthesis of multi-functional superparamagnetic core-gold shell nanoparticles coated with chitosan and folate for focused antitumor remedy. Nanomaterials. 2020;11:32.
Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, et al. Investigation of dextran-coated superparamagnetic nanoparticles for focused vinblastine managed launch, supply, apoptosis induction, and gene expression in pancreatic most cancers cells. Molecules. 2020;25:4721.
Albukhaty S, Naderi-Manesh H, Tiraihi T, Sakhi JM. Poly-l-lysine-coated superparamagnetic nanoparticles: a novel technique for the transfection of pro-BDNF into neural stem cells. Artif Cells Nanomed Biotechnol. 2018;46:125–32.
Shirazi M, Allafchian A, Salamati H. Design and fabrication of magnetic Fe3O4-QSM nanoparticles loaded with ciprofloxacin as a possible antibacterial agent. Int J Biol Macromol. 2023;241: 124517.
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, et al. The translational paradigm of nanobiomaterials: organic chemistry to trendy purposes. Mater Right this moment Bio. 2022;17: 100463.
Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and imaging-guided remedy of tumors. Small. 2023. https://doi.org/10.1002/smll.202302856.
Jeon S, Park BC, Lim S, Yoon HY, Jeon YS, Kim BS, et al. Warmth-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor remedy. ACS Appl Mater Interfaces. 2020;12:33483–91.
Peng Y, Gao Y, Yang C, Guo R, Shi X, Cao X. Low-molecular-weight poly(ethylenimine) nanogels loaded with ultrasmall iron oxide nanoparticles for T(1)-weighted MR imaging-guided gene remedy of sarcoma. ACS Appl Mater Interfaces. 2021;13:27806–13.
Turrina C, Schoenen M, Milani D, Klassen A, Rojas Gonzaléz DM, Cvirn G, et al. Software of magnetic iron oxide nanoparticles: thrombotic exercise, imaging and cytocompatibility of silica-coated and carboxymethyl dextrane-coated particles. Colloids Surf, B. 2023;228: 113428.
Mushtaq S, Shahzad Okay, Saeed T, Ul-Hamid A, Abbasi BH, Ahmad N. Floor functionalized drug loaded spinel ferrite MFe2O4 (M = Fe Co, Ni, Zn) nanoparticles, their biocompatibility and cytotoxicity in vitro: a comparability. Beilstein Arch. 2021;2021:56.
Pinheiro WO, Fascineli ML, Farias GR, Horst FH, Andrade LR, Correa LH, et al. The affect of feminine mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles. Int J Nanomedicine. 2019;14:3375–88.
Dadfar SM, Roemhild Okay, Drude NI, Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic purposes. Adv Drug Deliv Rev. 2019;138:302–25.
Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and utility for setting sustainability. Magn Nanopart-Based mostly Hybrid Mater. 2021;17:33–62.
Ling D, Lee N, Hyeon T. Chemical synthesis and meeting of uniformly sized iron oxide nanoparticles for medical purposes. Acc Chem Res. 2015;48:1276–85.
Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, purposes, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.
Verma SK, Suar M, Mishra YK. Editorial: inexperienced perspective of nano-biotechnology: nanotoxicity horizon to biomedical purposes. Entrance Bioeng Biotechnol. 2022;10: 919226.
Jacinto MJ, Silva VC, Valladão DMS, Souto RS. Biosynthesis of magnetic iron oxide nanoparticles: a overview. Biotechnol Lett. 2020;43:1–12.
Verma SK, Patel P, Panda PK, Kumari P, Patel P, Arunima A, et al. Figuring out components for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Inexperienced Chem. 2021;23:3439.
Sheel R, Kumari P, Panda PK, Ansari MDJ, Patel P, Singh S, et al. Molecular intrinsic proximal interplay infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267:115482.
Ngnintedem Yonti C, Kenfack Tsobnang P, Lontio Fomekong R, Devred F, Mignolet E, Larondelle Y, et al. Inexperienced synthesis of iron-doped cobalt oxide nanoparticles from palm kernel oil through co-precipitation and structural characterization. Nanomaterials. 2021;11:2833.
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, et al. Magnetic nanoparticles: a overview on synthesis, characterization, functionalization, and biomedical purposes. Small. 2023. https://doi.org/10.1002/smll.202304848.
Zhang G, Liao Y, Baker I. Floor engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater Sci Eng C Mater Biol Appl. 2010;30:92–7.
Al-Kinani MA, Haider AJ, Al-Musawi S. Excessive uniformity distribution of Fe@Au preparation by a micro-emulsion technique. IOP Conf Ser Mater Sci Eng. 2020;987: 012013.
Bustamante-Torres M, Romero-Fierro D, Estrella-Nuñez J, Arcentales-Vera B, Chichande-Proaño E, Bucio E. Polymeric composite of magnetite iron oxide nanoparticles and their utility in biomedicine: a overview. Polymers. 2022;14:752.
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, et al. Nanomaterial by sol-gel technique: synthesis and utility. Adv Mater Sci Eng. 2021;2021:1–21.
Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–54.
Patsula V, Kosinová L, Lovrić M, Ferhatovic Hamzić L, Rabyk M, Konefal R, et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and utility in magnetic resonance imaging. ACS Appl Mater Interfaces. 2016;8:7238–47.
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, et al. Are iron oxide nanoparticles secure? Present information and future views. J Hint Elem Med Biol. 2016;38:53–63.
Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MDP. Design methods for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev. 2019;138:68–104.
Abakumov MA, Semkina AS, Skorikov AS, Vishnevskiy DA, Ivanova AV, Mironova E. Toxicity of iron oxide nanoparticles: measurement and coating results. J Biochem Mol Toxicol. 2018;32(12):e22225.
Wu L, Wang C, Li Y. Iron oxide nanoparticle focusing on mechanism and its utility in tumor magnetic resonance imaging and remedy. Nanomedicine (Lond). 2022;17(21):1567–83.
Das S, Ross A, Ma XX, Becker S, Schmitt C, Duijn F, et al. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nat Commun. 2022;13(1):6140.
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat Nanotechnol. 2016;11(3):231–41.
Mehmood S, Ali Z, Khan SR, Aman S, Elnaggar AY, Ibrahim MM, et al. Mechanically steady magnetic metallic supplies for biomedical purposes. Supplies. 2022;15:8009.
Kraus S, Rabinovitz R, Sigalov E, Eltanani M, Khandadash R, Tal C, et al. Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and security assessments. Arch Toxicol. 2022;96:2447–64.
Fernandez-Alvarez F, Caro C, Garcia-Garcia G, Garcia-Martin ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential purposes for mixed MRI and hyperthermia towards most cancers. J Mater Chem B. 2021;9:4963–80.
Chen L, Wu Y, Wu H, Li J, Xie J, Zang F. Magnetic focusing on mixed with energetic focusing on of dual-ligand iron oxide nanoprobes to advertise the penetration depth in tumors for efficient magnetic resonance imaging and hyperthermia. Acta Biomater. 2019;96:491–504.
Meng QF, Rao L, Zan M, Chen M, Yu GT, Wei X, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor remedy. Nanotechnology. 2018;29: 134004.
Ferretti AM, Usseglio S, Mondini S, Drago C, La MR, Chini B, et al. In the direction of bio-compatible magnetic nanoparticles: Immune-related results, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with surprising renal clearance. J Colloid Interf Sci. 2021;582:678–700.
Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic analysis of magnetic liposomes designed for self-controlled most cancers hyperthermia and chemotherapy. Integr Biol (Camb). 2017;9:555–65.
Xu S, Wang J, Wei Y, Zhao H, Tao T, Wang H, et al. In situ one-pot synthesis of Fe2O3@BSA core-shell nanoparticles as enhanced T1-weighted magnetic resonance think about distinction brokers. ACS Appl Mater Interfaces. 2020;12:56701–11.
Verma SK, Nandi A, Sinha A, Patel P, Jha E, Mohanty S, et al. Zebrafish (Danio rerio) as an ecotoxicological mannequin for Nanomaterial induced toxicity profiling. Summary Nanomed. 2021;4(1):750–81.
Verma SK, Thirumurugan A, Panda PK, Patel P, Nandi A, Jha E, et al. Altered electrochemical properties of iron oxide nanoparticles by carbon improve molecular biocompatibility by discrepant atomic interplay. Supplies Right this moment Bio. 2021;12: 100131.
Nosrati H, Salehiabar M, Fridoni M, Abdollahifar MA, Kheiri Manjili H, Davaran S, et al. new perception about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci Rep. 2019;9:7173.
Fahmy HM, El-Daim TM, Ali OA, Hassan AA, Mohammed FF, Fathy MM. Floor modifications have an effect on iron oxide nanoparticles’ biodistribution after multiple-dose administration in rats. J Biochem Mol Toxicol. 2021;35: e22671.
Mabrouk M, Ibrahim Fouad G, El-Sayed SAM, Rizk MZ, Beherei HH. Hepatotoxic and neurotoxic potential of iron oxide nanoparticles in wistar rats: a biochemical and ultrastructural research. Biol Hint Elem Res. 2021;200:3638–65.
Toropova YG, Zelinskaya IA, Gorshkova MN, Motorina DS, Korolev DV, Velikonivtsev FS, et al. Albumin protecting maintains endothelial operate upon magnetic iron oxide nanoparticles intravenous injection in rats. J Biomed Mater Res A. 2021;109:2017–26.
Mejias R, Gutierrez L, Salas G, Perez-Yague S, Zotes TM, Lazaro FJ, et al. Long run biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles assist their use in biomedical purposes. J Management Launch. 2013;171:225–33.
Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, et al. Multifunctional theranostic nanoparticles based mostly on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11:10992–1004.
Li X, Yang Y, Jia Y, Pu X, Yang T, Wang Y, et al. Enhanced tumor focusing on results of a novel paclitaxel-loaded polymer: PEG-PCCL-modified magnetic iron oxide nanoparticles. Drug Deliv. 2017;24:1284–94.
Unterweger H, Janko C, Schwarz M, Dezsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable distinction agent for magnetic resonance imaging. Int J Nanomedicine. 2017;12:5223–38.
Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Okay, Rao Okay, et al. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol. 2021;26:291–301.
Al Faraj A, Shaik AP, Shaik AS. Impact of floor coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology. 2015;9:825–34.
Dai L, Liu Y, Wang Z, Guo F, Shi D, Zhang B. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI distinction enhancement. Mater Sci Eng C Mater Biol Appl. 2014;41:161–7.
Ghosh S, Ghosh I, Chakrabarti M, Mukherjee A. Genotoxicity and biocompatibility of superparamagnetic iron oxide nanoparticles: Affect of floor modification on biodistribution, retention, DNA injury and oxidative stress. Meals Chem Toxicol. 2020;136: 110989.
Britos TN, Castro CE, Bertassoli BM, Petri G, Fonseca FLA, Ferreira FF, et al. In vivo analysis of thiol-functionalized superparamagnetic iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;99:171–9.
Awada H, Sene S, Laurencin D, Lemaire L, Franconi F, Bernex F, et al. Lengthy-term in vivo performances of polylactide/iron oxide nanoparticles core-shell fibrous nanocomposites as MRI-visible magneto-scaffolds. Biomater Sci. 2021;9:6203–13.
Silva AH, Lima E, Mansilla MV, Zysler RD, Troiani H, Pisciotti MLM, et al. Superparamagnetic iron-oxide nanoparticles mPEG350– and mPEG2000-coated: cell uptake and biocompatibility analysis. Nanomedicine. 2016;12:909–19.
Ledda M, Fioretti D, Lolli MG, Papi M, Gioia C, Carletti R, et al. Biocompatibility evaluation of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential utility in nanomedicine. Nanoscale. 2020;12:1759-v1778.
Chen X, Qin Z, Zhao J, Yan X, Ye J, Ren E, et al. Pulsed magnetic area stimuli can promote chondrogenic differentiation of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in rats. J Biomed Nanotechnol. 2018;14:2135–45.
Shiji R, Joseph MM, Sen A, Unnikrishnan BS, Sreelekha TT. Galactomannan armed superparamagnetic iron oxide nanoparticles as a folate receptor focused multi-functional theranostic agent within the administration of most cancers. Int J Biol Macromol. 2022;219:740–53.
Wu L, Wen W, Wang X, Huang D, Cao J, Qi X, et al. Ultrasmall iron oxide nanoparticles trigger vital toxicity by particularly inducing acute oxidative stress to a number of organs. Half Fibre Toxicol. 2022;19:24.
Zhao M, Liu Z, Dong L, Zhou H, Yang S, Wu W, et al. A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. Int J Nanomedicine. 2018;13:4433–43.
Rozhina E, Danilushkina A, Akhatova F, Fakhrullin R, Rozhin A, Batasheva S. Biocompatibility of magnetic nanoparticles coating with polycations utilizing A549 cells. J Biotechnol. 2021;325:25–34.
Wu L, Zhang F, Wei Z, Li X, Zhao H, Lv H, et al. Magnetic supply of Fe3O4@polydopamine nanoparticle-loaded pure killer cells counsel a promising anticancer remedy. Biomater Sci. 2018;6:2714–25.
Nowicka AM, Ruzycka-Ayoush M, Kasprzak A, Kowalczyk A, Bamburowicz-Klimkowska M, Sikorska M, et al. Software of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for environment friendly magnetic fluid hyperthermia in lung most cancers cells. J Mater Chem B. 2023;11:4028–41.
Tang Z, Zhou Y, Solar H, Li D, Zhou S. Biodegradable magnetic calcium phosphate nanoformulation for most cancers remedy. Eur J Pharm Biopharm. 2014;87:90–100.
Reynders H, Zundert I, Silva R, Carlier B, Deschaume O, Bartic C, et al. Label-free iron oxide nanoparticles as multimodal distinction brokers in cells utilizing multi-photon and magnetic resonance imaging. Int J Nanomedicine. 2021;16:8375–89.
Legge CJ, Colley HE, Lawson MA, Rawlings AE. Focused magnetic nanoparticle hyperthermia for the remedy of oral most cancers. J Oral Pathol Med. 2019;48:803–9.
Paulino-Gonzalez AD, Sakagami H, Bandow Okay, Kanda Y, Nagasawa Y, Hibino Y, et al. Organic properties of the aggregated type of chitosan magnetic nanoparticle. In Vivo. 2020;34:1729–38.
Shanavas A, Sasidharan S, Bahadur D, Srivastava R. Magnetic core-shell hybrid nanoparticles for receptor focused anti-cancer remedy and magnetic resonance imaging. J Colloid Interface Sci. 2017;486:112–20.
Shahdeo D, Roberts A, Kesarwani V, Horvat M, Chouhan RS, Gandhi S. Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian most cancers. Biosci Rep. 2022;42(2):BSR20212622.
Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, et al. Biocompatible nanoclusters with excessive heating effectivity for systemically delivered magnetic hyperthermia. ACS Nano. 2019;13:6383–95.
Zhang Y, Xia M, Zhou Z, Hu X, Wang J, Zhang M, et al. p53 promoted ferroptosis in ovarian most cancers cells handled with human serum incubated-superparamagnetic iron oxides. Int J Nanomedicine. 2021;16:283–96.
Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, et al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded beta-cyclodextrin potential for ovarian most cancers dual-targeting remedy. Mater Sci Eng C Mater Biol Appl. 2014;42:325–32.
Braim FS, Razak NN, Aziz AA, Ismael LQ, Sodipo BK. Ultrasound assisted chitosan coated iron oxide nanoparticles: Affect of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. Ultrason Sonochem. 2022;88: 106072.
Moskvin M, Babic M, Reis S, Cruz MM, Ferreira LP, Carvalho MD, et al. Organic analysis of surface-modified magnetic nanoparticles as a platform for colon most cancers cell theranostics. Colloids Surf B Biointerfaces. 2018;161:35–41.
Chen L, Xie J, Wu H, Zang F, Ma M, Hua Z, et al. Enhancing sensitivity of magnetic resonance imaging through the use of a dual-targeted magnetic iron oxide nanoprobe. Colloids Surf B Biointerfaces. 2018;161:339–46.
Mathieu P, Coppel Y, Respaud M, Nguyen QT, Boutry S, Laurent S, et al. Silica coated iron/iron oxide nanoparticles as a nano-platform for T2 weighted magnetic resonance imaging. Molecules. 2019;24(24):4629.
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility research of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical utility. Sci Rep. 2017;7:46513.
Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, et al. Iron oxide nanoparticle agglomeration influences dose charges and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology. 2014;8:663–75.
Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, et al. Theranostic MUC-1 aptamer focused gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal remedy of colon most cancers. Colloids Surf B Biointerfaces. 2016;143:224–32.
Yang SJ, Tseng SY, Wang CH, Younger TH, Chen KC, Shieh MJ. Magnetic nanomedicine for CD133-expressing most cancers remedy utilizing locoregional hyperthermia mixed with chemotherapy. Nanomedicine. 2020;15:2543–61.
Lindemann A, Ludtke-Buzug Okay, Fraderich BM, Grafe Okay, Pries R, Wollenberg B. Organic influence of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck most cancers cells. Int J Nanomedicine. 2014;9:5025–40.
Thomas RG, Moon MJ, Lee H, Sasikala ARK, Kim CS, Park IK, et al. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for most cancers prognosis and hyperthermia remedy. Carbohydr Polym. 2015;131:439–46.
Unterweger H, Tietze R, Janko C, Zaloga J, Lyer S, Durr S, et al. Improvement and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for focused drug supply. Int J Nanomedicine. 2014;9:3659–76.
Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, et al. PSMA-targeting iron oxide magnetic nanoparticles improve MRI of preclinical prostate most cancers. Nanomedicine. 2015;10:375–86.
Wadajkar AS, Menon JU, Tsai YS, Gore C, Dobin T, Gandee L, Kangasniemi Okay, et al. Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials. 2013;34:3618–25.
Sato A, Itcho N, Ishiguro H, Okamoto D, Kobayashi N, Kawai Okay, et al. Magnetic nanoparticles of Fe3O4 improve docetaxel-induced prostate most cancers cell demise. Int J Nanomedicine. 2013;8:3151–60.
Ahmed MSU, Salam AB, Yates C, Willian Okay, Jaynes J, Turner T, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug supply system for the remedy and imaging of prostate most cancers. Int J Nanomedicine. 2017;12:6973–84.
Soleymani M, Velashjerdi M, Shaterabadi Z, Barati A. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia remedy and focusing on CD44-overexpressing most cancers cells. Carbohydr Polym. 2020;237: 116130.
Zhang T, Wang Z, Xiang H, Xu X, Zou J, Lu C. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging. ACS Appl Mater Interfaces. 2021;13:33850–61.
Lu X, Zhou H, Liang Z, Feng J, Lu Y, Huang L, et al. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors. J Nanobiotechnology. 2022;20:350.
Gao H, Zhang T, Zhang Y, Chen Y, Liu B, Wu J, et al. Ellipsoidal magnetite nanoparticles: a brand new member of the magnetic-vortex nanoparticles household for environment friendly magnetic hyperthermia. J Mater Chem B. 2020;8:515–22.
Attari E, Nosrati H, Danafar H, Kheiri MH. Methotrexate anticancer drug supply to breast most cancers cell traces by iron oxide magnetic based mostly nanocarrier. J Biomed Mater Res A. 2019;107:2492–500.
Calero M, Chiappi M, Lazaro-Carrillo A, Rodriguez MJ, Chichon FJ, Crosbie-Staunton Okay, et al. Characterization of interplay of magnetic nanoparticles with breast most cancers cells. J Nanobiotechnology. 2015;13:16.
Liu Z, Lin H, Zhao M, Dai C, Zhang S, Peng W, et al. 2D superparamagnetic tantalum carbide composite mxenes for environment friendly breast-cancer theranostics. Theranostics. 2018;8:1648–64.
Chen Z, Peng Y, Xie X, Feng Y, Li T, Li S, et al. Dendrimer-functionalized superparamagnetic nanobeacons for real-time detection and depletion of HSP90alpha mRNA and MR imaging. Theranostics. 2019;9:5784–96.
Kucharczyk Okay, Kaczmarek Okay, Jozefczak A, Slachcinski M, Mackiewicz A, Dams-Kozlowska H. Hyperthermia remedy of most cancers cells by the appliance of focused silk/iron oxide composite spheres. Mater Sci Eng C Mater Biol Appl. 2021;120: 111654.
Kermanian M, Sadighian S, Naghibi M, Khoshkam M. PVP Floor-protected silica coated iron oxide nanoparticles for MR imaging utility. J Biomater Sci Polym Ed. 2021;32:1356–69.
Tran TT, Tran PH, Yoon TJ, Lee BJ. Fattigation-platform theranostic nanoparticles for most cancers remedy. Mater Sci Eng C Mater Biol Appl. 2017;75:1161–7.
Serio F, Silvestri N, Kumar Avugadda S, Nucci GEP, Nitti S, Onesto V, et al. Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic results on most cancers cells. J Colloid Interface Sci. 2022;607:34–44.
Gawali SL, Shelar SB, Gupta J, Barick KC, Hassan PA. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia utility. Int J Biol Macromol. 2021;166:851–60.
Zhao H, Sene S, Mielcarek AM, Miraux S, Menguy N, Ihiawakrim D, et al. Hierarchical superparamagnetic metal-organic framework nanovectors as anti-inflammatory nanomedicines. J Mater Chem B. 2023;11:3195–211.
Calero M, Gutierrez L, Salas G, Luengo Y, Lazaro A, Acedo P, et al. Environment friendly and secure internalization of magnetic iron oxide nanoparticles: two elementary necessities for biomedical purposes. Nanomedicine. 2014;10:733–43.
Hoang Thi TT, Nguyen Tran DH, Bach LG, Vu-Quang H, Nguyen DC, Park KD, et al. Purposeful magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug supply. Pharmaceutics. 2019;11(3):120.
Solar Z, Tune X, Li X, Su T, Qi S, Qiao R, et al. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric most cancers mannequin. Nanoscale. 2014;6:14343–53.
Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug supply. J Inorg Biochem. 2019;192:72–81.
Liu X, Deng X, Li X, Xue D, Zhang H, Liu T, et al. A visualized investigation on the atomic scale of the antitumor impact of magnetic nanomedicine on gastric most cancers cells. Nanomedicine. 2014;9:1389–402.
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, et al. Atranorin pushed by nano supplies SPION result in ferroptosis of gastric most cancers stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci. 2022;19:1680–94.
Moskvin M, Huntosova V, Herynek V, Matous P, Michalcova A, Lobaz V, et al. In vitro mobile exercise of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf B Biointerfaces. 2021;204: 111824.
Das P, Salvioni L, Malatesta M, Vurro F, Mannucci S, Gerosa M, et al. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with excessive relaxivity and particular absorption price for environment friendly magnetic resonance imaging and magnetic hyperthermia. J Colloid Interface Sci. 2020;579:186–94.
Li X, Wang Z, Ma M, Chen Z, Tang X, Wang Z. Self-assembly iron oxide nanoclusters for photothermal-mediated synergistic chemo/chemodynamic remedy. J Immunol Res. 2021;2021:9958239.
Alahdal HM, Abdullrezzaq SA, Amin HIM, Alanazi SF, Jalil AT, et al. Hint elements-based Auroshell gold@hematite nanostructure: inexperienced synthesis and their hyperthermia remedy. IET Nanobiotechnol. 2023;17:22–31.
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma remedy: a combinational method for enhanced supply of nanoparticles. Sci Rep. 2020;10:11292.
Wang B, Sandre O, Wang Okay, Shi H, Xiong Okay, Huang YB, et al. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with excessive density of magnetic materials. Mater Sci Eng C Mater Biol Appl. 2019;104: 109920.
Kwon J, Mao X, Lee HA, Oh S, Tufa LT, Choi JY, et al. Iron-Palladium magnetic nanoparticles for decolorizing rhodamine B and scavenging reactive oxygen species. J Colloid Interface Sci. 2021;588:646–56.
Kluge M, Leder A, Hillebrandt KH, Struecker B, Geisel D, Denecke T, et al. The magnetic area of magnetic resonance imaging methods doesn’t have an effect on cells labeled with micrometer-sized iron oxide particles. Tissue Eng Half C Strategies. 2017;23:412–21.
Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, et al. Biocompatible peptide-coated ultrasmall superparamagnetic iron oxide nanoparticles for in vivo contrast-enhanced magnetic resonance imaging. ACS Nano. 2018;12:6480–91.
Saraswathy A, Nazeer SS, Nimi N, Santhakumar H, Suma PR, Jibin Okay, et al. Asialoglycoprotein receptor focused optical and magnetic resonance imaging and remedy of liver fibrosis utilizing pullulan stabilized multi-functional iron oxide nanoprobe. Sci Rep. 2021;11:18324.
Moise S, Cespedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND. The mobile magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep. 2017;7:39922.
Kovach AK, Gambino JM, Nguyen V, Nelson Z, Szasz T, Liao J, et al. Potential preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a focused drug supply system for the induction of cell demise in rodent osteosarcoma cells. Biores Open Entry. 2016;5:299–307.
Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen VT, Kim HH, et al. Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia most cancers remedy. Nanomaterials. 2017;7(12):426.
Amiryaghoubi N, Abdolahinia ED, Nakhlband A, Aslzad S, Fathi M, Barar J, et al. Good chitosan-folate hybrid magnetic nanoparticles for focused supply of doxorubicin to osteosarcoma cells. Colloids Surf B Biointerfaces. 2022;220: 112911.
Zhao C, Han Q, Qin H, Yan H, Qian Z, Ma Z, et al. Biocompatible hyperbranched polyester magnetic nanocarrier for stimuli-responsive drug launch. J Biomater Sci Polym Ed. 2017;28:616–28.
Huang QT, Hu QQ, Wen ZF, Li YL. Iron oxide nanoparticles inhibit tumor progress by ferroptosis in diffuse giant B-cell lymphoma. Am J Most cancers Res. 2023;13:498–508.
Tune L, Chen Y, Ding J, Wu H, Zhang W, Ma M, et al. Rituximab conjugated iron oxide nanoparticles for focused imaging and enhanced remedy towards CD20-positive lymphoma. J Mater Chem B. 2020;8:895–907.
Dai X, Yao J, Zhong Y, Li Y, Lu Q, Zhang Y, et al. Preparation and characterization of Fe3O4@MTX magnetic nanoparticles for thermochemotherapy of main central nervous system lymphoma in vitro and in vivo. Int J Nanomedicine. 2019;14:9647–63.
Lin YR, Chan CH, Lee HT, Cheng SJ, Yang JW, Chang SJ, et al. Distant magnetic management of autophagy in mouse B-lymphoma cells with iron oxide nanoparticles. Nanomaterials. 2019;9(4):551.
Takke A, Shende P. Magnetic-core-based silibinin nanopolymeric carriers for the remedy of renal cell most cancers. Life Sci. 2021;275: 119377.
Lu C, Li J, Xu Okay, Yang C, Wang J, Han C, et al. Fabrication of mAb G250-SPIO molecular magnetic resonance imaging nanoprobe for the particular detection of renal cell carcinoma in vitro. PLoS ONE. 2014;9: e101898.
Alphandéry E. Iron oxide nanoparticles for therapeutic purposes. Drug Discov Right this moment. 2020;25:141–9.
Li Y, Wei X, Tao F, Deng C, Lv C, Chen C, et al. The potential utility of nanomaterials for ferroptosis-based most cancers remedy. Biomed Mater. 2021;16: 042013.
Mulens-Arias V, Rojas JM, Barber DF. Using iron oxide nanoparticles to reprogram macrophage responses and the immunological tumor microenvironment. Entrance Immunol. 2021;12(12): 693709.
Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-responsive iron oxide nanotheranostics: a flexible and highly effective method for most cancers remedy. Adv Healthc Mater. 2021;10(5): e2001044.
Alphandéry E. Biodistribution and focusing on properties of iron oxide nanoparticles for remedies of most cancers and iron anemia illness. Nanotoxicology. 2019;13:573–96.
Fèvre RL, Durand-Dubief M, Chebbi I, Mandawala C, Lagroix F, Valet JP, et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia remedy of glioblastoma. Theranostics. 2017;7:4618–31.
Mahajan UM, Teller S, Sendler M, Palankar R, Brandt C, Schwaiger T, et al. Tumour-specific supply of siRNA-coupled superparamagnetic iron oxide nanoparticles, focused towards PLK1, stops development of pancreatic most cancers. Intestine. 2016;65:1838–49.
Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, et al. Magnetic particle focusing on for prognosis and remedy of lung cancers. J Contr Launch. 2020;328:776–91.
Saber-Samandari S, Mohammadi-Aghdam M, Saber-Samandari S. A novel magnetic bifunctional nanocomposite scaffold for photothermal remedy and tissue engineering. Int J Biol Macromol. 2019;138:810–8.
Tampieri A, Iafisco M, Sandri M, Panseri S, Cunha C, Sprio S, et al. Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative course of. ACS Appl Mater Interfaces. 2014;6:15697–707.
Labusca L, Herea DD, Danceanu CM, Minuti AE, Stavila C, Grigoras M, et al. The impact of magnetic area publicity on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Mater Sci Eng C Mater Biol Appl. 2020;109: 110652.
Jin H, Qian Y, Dai Y, Qiao S, Huang C, Lu L, et al. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced most cancers immunotherapy. Theranostics. 2016;6:2000–14.
Su H, Mou Y, An Y, Han W, Huang X, Xia G, et al. The migration of artificial magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomedicine. 2013;8:3737–44.
Rojas JM, Gavilan H, Dedo V, Lorente-Sorolla E, Sanz-Ortega L, Silva GB, et al. Time-course evaluation of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater. 2017;58:181–95.
Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, et al. Assessing the mixture of magnetic area stimulation, iron oxide nanoparticles, and aligned electrospun fibers for selling neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater. 2021;131:302–13.
Guldris N, Argibay B, Gallo J, Iglesias-Rey R, Carbó-Argibay E, Kolenko YV, et al. Magnetite nanoparticles for stem cell labeling with excessive effectivity and long-term in vivo monitoring. Bioconjug Chem. 2016;28:362–70.
Silva LH, Silva JR, Ferreira GA, Silva RC, Lima EC, Azevedo RB, et al. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: evaluation of biocompatibility and potential purposes. J Nanobiotechnology. 2016;14:59.
Xie Y, Liu W, Zhang B, Wang B, Wang L, Liu S, et al. Systematic intracellular biocompatibility assessments of superparamagnetic iron oxide nanoparticles in human umbilical wire mesenchyme stem cells in testifying its reusability for internal cell monitoring by MRI. J Biomed Nanotechnol. 2019;15:2179–92.
Daya R, Xu C, Nguyen NT, Liu HH. Angiogenic hyaluronic acid hydrogels with curcumin-coated magnetic nanoparticles for tissue restore. ACS Appl Mater Interfaces. 2022;14:11051–67.
Boitard C, Curcio A, Rollet AL, Wilhelm C, Menager C, Griffete N. Organic destiny of magnetic protein-specific molecularly imprinted polymers: toxicity and degradation. ACS Appl Mater Interfaces. 2019;11:35556–65.
Schneider MG, Azcona P, Campelo A, Massheimer V, Agotegaray M, Lassalle V. Magnetic nanoplatform with novel potential for the remedy of bone pathologies: drug loading and biocompatibility on blood and bone cells. IEEE Trans Nanobiosci. 2023;22:11–8.
Carreira SC, Armstrong JP, Seddon AM, Perriman AW, Hartley-Davies R, Schwarzacher W. Extremely-fast stem cell labelling utilizing cationised magnetoferritin. Nanoscale. 2016;8:7474–83.
Bianco LD, Spizzo F, Yang Y, Greco G, Gatto ML, Barucca G, et al. Silk fibroin movies with embedded magnetic nanoparticles: analysis of the magneto-mechanical stimulation impact on osteogenic differentiation of stem cells. Nanoscale. 2022;14:14558–74.
Pongrac IM, Radmilovic MD, Ahmed LB, Mlinaric H, Regul J, Skokic S, et al. D-mannose-coating of maghemite nanoparticles improved labeling of neural stem cells and allowed their visualization by ex vivo MRI after transplantation within the mouse mind. Cell Transplant. 2019;28:553–67.
Taruno Okay, Kurita T, Kuwahata A, Yanagihara Okay, Enokido Okay, Katayose Y, et al. Multicenter medical trial on sentinel lymph node biopsy utilizing superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J Surg Oncol. 2019;120:1391–6.
Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi Okay, Kaneko M, et al. Handheld magnetic probe with everlasting magnet and corridor sensor for figuring out sentinel lymph nodes in breast most cancers sufferers. Sci Rep. 2018;8:1195.
Vural V, Yilmaz OC. The Turkish SentiMAG feasibility trial: preliminary outcomes. Breast Most cancers. 2020;27:261–5.
Karakatsanis A, Olofsson H, Stalberg P, Bergkvist L, Abdsaleh S, Warnberg F. Simplifying logistics and avoiding the pointless in sufferers with breast most cancers present process sentinel node biopsy. A potential feasibility trial of the preoperative injection of tremendous paramagnetic iron oxide nanoparticles. Scand J Surg. 2018;107:130–7.
Alvarado MD, Mittendorf EA, Teshome M, Thompson AM, Daring RJ, Gittleman MA. SentimagIC: a non-inferiority trial evaluating superparamagnetic iron oxide versus technetium-99m and blue dye within the detection of axillary sentinel nodes in sufferers with early-stage breast most cancers. Ann Surg Oncol. 2019;26:3510–6.
Houpeau JL, Chauvet MP, Guillemin F, Bendavid-Athias C, Charitansky H, Kramar A, et al. Sentinel lymph node identification utilizing superparamagnetic iron oxide particles versus radioisotope: The French Sentimag feasibility trial. J Surg Oncol. 2016;113:501–7.
Karakatsanis A, Christiansen PM, Fischer L, Hedin C, Pistioli L, Sund M, et al. The Nordic SentiMag trial: a comparability of tremendous paramagnetic iron oxide (SPIO) nanoparticles versus Tc(99) and patent blue within the detection of sentinel node (SN) in sufferers with breast most cancers and a meta-analysis of earlier research. Breast Most cancers Res Deal with. 2016;157:281–94.
Rubio IT, Rodriguez-Revuelto R, Espinosa-Bravo M, Siso C, Rivero J, Esgueva A. A randomized research evaluating completely different doses of superparamagnetic iron oxide tracer for sentinel lymph node biopsy in breast most cancers: the SUNRISE research. Eur J Surg Oncol. 2020;46:2195–201.
Man V, Suen D, Kwong A. Use of superparamagnetic iron oxide (SPIO) versus standard method in sentinel lymph node detection for breast most cancers: a randomised managed trial. Ann Surg Oncol. 2023;30:3237–44.
Aldenhoven L, Frotscher C, Korver-Steeman R, Martens MH, Kuburic D, Janssen A, et al. Sentinel lymph node mapping with superparamagnetic iron oxide for melanoma: a pilot research in wholesome individuals to ascertain an optimum MRI workflow protocol. BMC Most cancers. 2022;22:1062.
Birkhauser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, et al. Mixed ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of sufferers with bladder and prostate most cancers. Eur Urol. 2013;64:953–60.
Muehe AM, Siedek F, Theruvath AJ, Seekins J, Spunt SL, Pribnow A, et al. Differentiation of benign and malignant lymph nodes in pediatric sufferers on ferumoxytol-enhanced PET/MRI. Theranostics. 2020;10:3612–21.
Yilmaz A, Dengler MA, Kuip H, Yildiz H, Rosch S, Klumpp S, et al. Imaging of myocardial infarction utilizing ultrasmall superparamagnetic iron oxide nanoparticles: a human research utilizing a multi-parametric cardiovascular magnetic resonance imaging method. Eur Coronary heart J. 2013;34:462–75.
Stirrat CG, Alam SR, MacGillivray TJ, Grey CD, Dweck MR, Dibb Okay, et al. Ferumoxytol-enhanced magnetic resonance imaging in acute myocarditis. Coronary heart. 2018;104:300–5.
Florian A, Ludwig A, Rösch S, Yildiz H, Sechtem U, Yilmaz A. Constructive impact of intravenous iron-oxide administration on left ventricular remodelling in sufferers with acute ST-elevation myocardial infarction-a cardiovascular magnetic resonance (CMR) research. J Cardiovasc Magn Reson. 2014;173(2):184–9.
Aoki T, Saito M, Koseki H, Tsuji Okay, Tsuji A, Murata Okay, et al. Investigators, macrophage imaging of cerebral aneurysms with ferumoxytol: an exploratory research in an animal mannequin and in sufferers. J Stroke Cerebrovasc Dis. 2017;26:2055–64.
Investigators MRS. Aortic wall irritation predicts stomach aortic aneurysm enlargement, rupture, and wish for surgical restore. Circulation. 2017;136:787–97.
Khan S, Amin FM, Fliedner FP, Christensen CE, Tolnai D, Younis S, et al. Investigating macrophage-mediated irritation in migraine utilizing ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging. Cephalalgia. 2019;39:1407–20.
Aghighi M, Pisani L, Theruvath AJ, Muehe AM, Donig J, Khan R, et al. Ferumoxytol is just not retained in kidney allografts in sufferers present process acute rejection. Mol Imaging Biol. 2018;20:139–49.
Theruvath AJ, Nejadnik H, Muehe AM, Gassert F, Lacayo NJ, Goodman SB, et al. Monitoring cell transplants in femoral osteonecrosis with magnetic resonance imaging: a proof-of-concept research in sufferers. Clin Most cancers Res. 2018;24:6223–9.
Guo X, Mao F, Wang W, Yang Y, Bai Z. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity evaluation in vitro. ACS Appl Mater Interfaces. 2015;7:14983–91.
Bona KD, Xu Y, Grey M, Truthful D, Hayles H, Milad L, et al. Brief- and long-term results of prenatal publicity to iron oxide nanoparticles: affect of floor cost and dose on developmental and reproductive toxicity. Int J Mol Sci. 2015;16:30251–68.
Agotegaray MA, Campelo AE, Zysler RD, Gumilar F, Bras C, Gandini A, et al. Magnetic nanoparticles for drug focusing on: from design to insights into systemic toxicity. Preclinical analysis of hematological, vascular and neurobehavioral toxicology. Biomater Sci. 2017;5:772–83.