Friday, January 12, 2024
HomeNanotechnologyLatest developments in preparation and biomedical purposes of iron oxide nanoparticles |...

Latest developments in preparation and biomedical purposes of iron oxide nanoparticles | Journal of Nanobiotechnology


  • Panda PK, Verma SK, Suar M. Nanoparticle–organic interactions: the renaissance of bionomics within the myriad nanomedical applied sciences. Nanomedicine. 2021;16(25):2249–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Hou S. Latest progress within the impact of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Demise Discov. 2023;9:195.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Liu Y, Tune L, Cui X, Zhou J, Jin G, et al. Iron oxide nanoparticle-based nanocomposites in biomedical utility. Tendencies Biotechnol. 2023;S0167–7799(23):00175.


    Google Scholar
     

  • Sprint S, Das T, Patel P, Panda PK, Suar M, Verma SK. Rising developments within the nanomedicine purposes of functionalized magnetic nanoparticles as novel therapies for acute and persistent illnesses. J Nanobiotechnology. 2022;20(1):393.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simnani FZ, Singh D, Patel P, Choudhury A, Sinha A, Nandi A, et al. Nanocarrier vaccine therapeutics for international infectious and persistent illnesses. Mater Right this moment. 2023;66:371–408.

    Article 

    Google Scholar
     

  • Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F. Design and synthesis of multi-functional superparamagnetic core-gold shell nanoparticles coated with chitosan and folate for focused antitumor remedy. Nanomaterials. 2020;11:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, et al. Investigation of dextran-coated superparamagnetic nanoparticles for focused vinblastine managed launch, supply, apoptosis induction, and gene expression in pancreatic most cancers cells. Molecules. 2020;25:4721.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albukhaty S, Naderi-Manesh H, Tiraihi T, Sakhi JM. Poly-l-lysine-coated superparamagnetic nanoparticles: a novel technique for the transfection of pro-BDNF into neural stem cells. Artif Cells Nanomed Biotechnol. 2018;46:125–32.

    Article 

    Google Scholar
     

  • Shirazi M, Allafchian A, Salamati H. Design and fabrication of magnetic Fe3O4-QSM nanoparticles loaded with ciprofloxacin as a possible antibacterial agent. Int J Biol Macromol. 2023;241: 124517.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, et al. The translational paradigm of nanobiomaterials: organic chemistry to trendy purposes. Mater Right this moment Bio. 2022;17: 100463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and imaging-guided remedy of tumors. Small. 2023. https://doi.org/10.1002/smll.202302856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon S, Park BC, Lim S, Yoon HY, Jeon YS, Kim BS, et al. Warmth-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor remedy. ACS Appl Mater Interfaces. 2020;12:33483–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Y, Gao Y, Yang C, Guo R, Shi X, Cao X. Low-molecular-weight poly(ethylenimine) nanogels loaded with ultrasmall iron oxide nanoparticles for T(1)-weighted MR imaging-guided gene remedy of sarcoma. ACS Appl Mater Interfaces. 2021;13:27806–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turrina C, Schoenen M, Milani D, Klassen A, Rojas Gonzaléz DM, Cvirn G, et al. Software of magnetic iron oxide nanoparticles: thrombotic exercise, imaging and cytocompatibility of silica-coated and carboxymethyl dextrane-coated particles. Colloids Surf, B. 2023;228: 113428.

    Article 
    CAS 

    Google Scholar
     

  • Mushtaq S, Shahzad Okay, Saeed T, Ul-Hamid A, Abbasi BH, Ahmad N. Floor functionalized drug loaded spinel ferrite MFe2O4 (M = Fe Co, Ni, Zn) nanoparticles, their biocompatibility and cytotoxicity in vitro: a comparability. Beilstein Arch. 2021;2021:56.


    Google Scholar
     

  • Pinheiro WO, Fascineli ML, Farias GR, Horst FH, Andrade LR, Correa LH, et al. The affect of feminine mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles. Int J Nanomedicine. 2019;14:3375–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadfar SM, Roemhild Okay, Drude NI, Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic purposes. Adv Drug Deliv Rev. 2019;138:302–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and utility for setting sustainability. Magn Nanopart-Based mostly Hybrid Mater. 2021;17:33–62.

    Article 

    Google Scholar
     

  • Ling D, Lee N, Hyeon T. Chemical synthesis and meeting of uniformly sized iron oxide nanoparticles for medical purposes. Acc Chem Res. 2015;48:1276–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, purposes, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma SK, Suar M, Mishra YK. Editorial: inexperienced perspective of nano-biotechnology: nanotoxicity horizon to biomedical purposes. Entrance Bioeng Biotechnol. 2022;10: 919226.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacinto MJ, Silva VC, Valladão DMS, Souto RS. Biosynthesis of magnetic iron oxide nanoparticles: a overview. Biotechnol Lett. 2020;43:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Verma SK, Patel P, Panda PK, Kumari P, Patel P, Arunima A, et al. Figuring out components for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Inexperienced Chem. 2021;23:3439.

    Article 
    CAS 

    Google Scholar
     

  • Sheel R, Kumari P, Panda PK, Ansari MDJ, Patel P, Singh S, et al. Molecular intrinsic proximal interplay infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267:115482.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngnintedem Yonti C, Kenfack Tsobnang P, Lontio Fomekong R, Devred F, Mignolet E, Larondelle Y, et al. Inexperienced synthesis of iron-doped cobalt oxide nanoparticles from palm kernel oil through co-precipitation and structural characterization. Nanomaterials. 2021;11:2833.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, et al. Magnetic nanoparticles: a overview on synthesis, characterization, functionalization, and biomedical purposes. Small. 2023. https://doi.org/10.1002/smll.202304848.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang G, Liao Y, Baker I. Floor engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater Sci Eng C Mater Biol Appl. 2010;30:92–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kinani MA, Haider AJ, Al-Musawi S. Excessive uniformity distribution of Fe@Au preparation by a micro-emulsion technique. IOP Conf Ser Mater Sci Eng. 2020;987: 012013.

    Article 
    CAS 

    Google Scholar
     

  • Bustamante-Torres M, Romero-Fierro D, Estrella-Nuñez J, Arcentales-Vera B, Chichande-Proaño E, Bucio E. Polymeric composite of magnetite iron oxide nanoparticles and their utility in biomedicine: a overview. Polymers. 2022;14:752.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, et al. Nanomaterial by sol-gel technique: synthesis and utility. Adv Mater Sci Eng. 2021;2021:1–21.

    Article 

    Google Scholar
     

  • Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patsula V, Kosinová L, Lovrić M, Ferhatovic Hamzić L, Rabyk M, Konefal R, et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and utility in magnetic resonance imaging. ACS Appl Mater Interfaces. 2016;8:7238–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, et al. Are iron oxide nanoparticles secure? Present information and future views. J Hint Elem Med Biol. 2016;38:53–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MDP. Design methods for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev. 2019;138:68–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abakumov MA, Semkina AS, Skorikov AS, Vishnevskiy DA, Ivanova AV, Mironova E. Toxicity of iron oxide nanoparticles: measurement and coating results. J Biochem Mol Toxicol. 2018;32(12):e22225.

    Article 
    PubMed 

    Google Scholar
     

  • Wu L, Wang C, Li Y. Iron oxide nanoparticle focusing on mechanism and its utility in tumor magnetic resonance imaging and remedy. Nanomedicine (Lond). 2022;17(21):1567–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das S, Ross A, Ma XX, Becker S, Schmitt C, Duijn F, et al. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nat Commun. 2022;13(1):6140.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat Nanotechnol. 2016;11(3):231–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehmood S, Ali Z, Khan SR, Aman S, Elnaggar AY, Ibrahim MM, et al. Mechanically steady magnetic metallic supplies for biomedical purposes. Supplies. 2022;15:8009.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus S, Rabinovitz R, Sigalov E, Eltanani M, Khandadash R, Tal C, et al. Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and security assessments. Arch Toxicol. 2022;96:2447–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Alvarez F, Caro C, Garcia-Garcia G, Garcia-Martin ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential purposes for mixed MRI and hyperthermia towards most cancers. J Mater Chem B. 2021;9:4963–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Wu Y, Wu H, Li J, Xie J, Zang F. Magnetic focusing on mixed with energetic focusing on of dual-ligand iron oxide nanoprobes to advertise the penetration depth in tumors for efficient magnetic resonance imaging and hyperthermia. Acta Biomater. 2019;96:491–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng QF, Rao L, Zan M, Chen M, Yu GT, Wei X, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor remedy. Nanotechnology. 2018;29: 134004.

    Article 
    PubMed 

    Google Scholar
     

  • Ferretti AM, Usseglio S, Mondini S, Drago C, La MR, Chini B, et al. In the direction of bio-compatible magnetic nanoparticles: Immune-related results, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with surprising renal clearance. J Colloid Interf Sci. 2021;582:678–700.

    Article 
    CAS 

    Google Scholar
     

  • Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic analysis of magnetic liposomes designed for self-controlled most cancers hyperthermia and chemotherapy. Integr Biol (Camb). 2017;9:555–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu S, Wang J, Wei Y, Zhao H, Tao T, Wang H, et al. In situ one-pot synthesis of Fe2O3@BSA core-shell nanoparticles as enhanced T1-weighted magnetic resonance think about distinction brokers. ACS Appl Mater Interfaces. 2020;12:56701–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma SK, Nandi A, Sinha A, Patel P, Jha E, Mohanty S, et al. Zebrafish (Danio rerio) as an ecotoxicological mannequin for Nanomaterial induced toxicity profiling. Summary Nanomed. 2021;4(1):750–81.

    Article 

    Google Scholar
     

  • Verma SK, Thirumurugan A, Panda PK, Patel P, Nandi A, Jha E, et al. Altered electrochemical properties of iron oxide nanoparticles by carbon improve molecular biocompatibility by discrepant atomic interplay. Supplies Right this moment Bio. 2021;12: 100131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nosrati H, Salehiabar M, Fridoni M, Abdollahifar MA, Kheiri Manjili H, Davaran S, et al. new perception about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci Rep. 2019;9:7173.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahmy HM, El-Daim TM, Ali OA, Hassan AA, Mohammed FF, Fathy MM. Floor modifications have an effect on iron oxide nanoparticles’ biodistribution after multiple-dose administration in rats. J Biochem Mol Toxicol. 2021;35: e22671.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mabrouk M, Ibrahim Fouad G, El-Sayed SAM, Rizk MZ, Beherei HH. Hepatotoxic and neurotoxic potential of iron oxide nanoparticles in wistar rats: a biochemical and ultrastructural research. Biol Hint Elem Res. 2021;200:3638–65.

    Article 
    PubMed 

    Google Scholar
     

  • Toropova YG, Zelinskaya IA, Gorshkova MN, Motorina DS, Korolev DV, Velikonivtsev FS, et al. Albumin protecting maintains endothelial operate upon magnetic iron oxide nanoparticles intravenous injection in rats. J Biomed Mater Res A. 2021;109:2017–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mejias R, Gutierrez L, Salas G, Perez-Yague S, Zotes TM, Lazaro FJ, et al. Long run biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles assist their use in biomedical purposes. J Management Launch. 2013;171:225–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, et al. Multifunctional theranostic nanoparticles based mostly on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11:10992–1004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Yang Y, Jia Y, Pu X, Yang T, Wang Y, et al. Enhanced tumor focusing on results of a novel paclitaxel-loaded polymer: PEG-PCCL-modified magnetic iron oxide nanoparticles. Drug Deliv. 2017;24:1284–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unterweger H, Janko C, Schwarz M, Dezsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable distinction agent for magnetic resonance imaging. Int J Nanomedicine. 2017;12:5223–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Okay, Rao Okay, et al. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol. 2021;26:291–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al Faraj A, Shaik AP, Shaik AS. Impact of floor coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology. 2015;9:825–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai L, Liu Y, Wang Z, Guo F, Shi D, Zhang B. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI distinction enhancement. Mater Sci Eng C Mater Biol Appl. 2014;41:161–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh S, Ghosh I, Chakrabarti M, Mukherjee A. Genotoxicity and biocompatibility of superparamagnetic iron oxide nanoparticles: Affect of floor modification on biodistribution, retention, DNA injury and oxidative stress. Meals Chem Toxicol. 2020;136: 110989.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Britos TN, Castro CE, Bertassoli BM, Petri G, Fonseca FLA, Ferreira FF, et al. In vivo analysis of thiol-functionalized superparamagnetic iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;99:171–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awada H, Sene S, Laurencin D, Lemaire L, Franconi F, Bernex F, et al. Lengthy-term in vivo performances of polylactide/iron oxide nanoparticles core-shell fibrous nanocomposites as MRI-visible magneto-scaffolds. Biomater Sci. 2021;9:6203–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva AH, Lima E, Mansilla MV, Zysler RD, Troiani H, Pisciotti MLM, et al. Superparamagnetic iron-oxide nanoparticles mPEG350– and mPEG2000-coated: cell uptake and biocompatibility analysis. Nanomedicine. 2016;12:909–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ledda M, Fioretti D, Lolli MG, Papi M, Gioia C, Carletti R, et al. Biocompatibility evaluation of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential utility in nanomedicine. Nanoscale. 2020;12:1759-v1778.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Qin Z, Zhao J, Yan X, Ye J, Ren E, et al. Pulsed magnetic area stimuli can promote chondrogenic differentiation of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in rats. J Biomed Nanotechnol. 2018;14:2135–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiji R, Joseph MM, Sen A, Unnikrishnan BS, Sreelekha TT. Galactomannan armed superparamagnetic iron oxide nanoparticles as a folate receptor focused multi-functional theranostic agent within the administration of most cancers. Int J Biol Macromol. 2022;219:740–53.

    Article 

    Google Scholar
     

  • Wu L, Wen W, Wang X, Huang D, Cao J, Qi X, et al. Ultrasmall iron oxide nanoparticles trigger vital toxicity by particularly inducing acute oxidative stress to a number of organs. Half Fibre Toxicol. 2022;19:24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Liu Z, Dong L, Zhou H, Yang S, Wu W, et al. A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. Int J Nanomedicine. 2018;13:4433–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozhina E, Danilushkina A, Akhatova F, Fakhrullin R, Rozhin A, Batasheva S. Biocompatibility of magnetic nanoparticles coating with polycations utilizing A549 cells. J Biotechnol. 2021;325:25–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Zhang F, Wei Z, Li X, Zhao H, Lv H, et al. Magnetic supply of Fe3O4@polydopamine nanoparticle-loaded pure killer cells counsel a promising anticancer remedy. Biomater Sci. 2018;6:2714–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowicka AM, Ruzycka-Ayoush M, Kasprzak A, Kowalczyk A, Bamburowicz-Klimkowska M, Sikorska M, et al. Software of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for environment friendly magnetic fluid hyperthermia in lung most cancers cells. J Mater Chem B. 2023;11:4028–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Zhou Y, Solar H, Li D, Zhou S. Biodegradable magnetic calcium phosphate nanoformulation for most cancers remedy. Eur J Pharm Biopharm. 2014;87:90–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynders H, Zundert I, Silva R, Carlier B, Deschaume O, Bartic C, et al. Label-free iron oxide nanoparticles as multimodal distinction brokers in cells utilizing multi-photon and magnetic resonance imaging. Int J Nanomedicine. 2021;16:8375–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legge CJ, Colley HE, Lawson MA, Rawlings AE. Focused magnetic nanoparticle hyperthermia for the remedy of oral most cancers. J Oral Pathol Med. 2019;48:803–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulino-Gonzalez AD, Sakagami H, Bandow Okay, Kanda Y, Nagasawa Y, Hibino Y, et al. Organic properties of the aggregated type of chitosan magnetic nanoparticle. In Vivo. 2020;34:1729–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanavas A, Sasidharan S, Bahadur D, Srivastava R. Magnetic core-shell hybrid nanoparticles for receptor focused anti-cancer remedy and magnetic resonance imaging. J Colloid Interface Sci. 2017;486:112–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahdeo D, Roberts A, Kesarwani V, Horvat M, Chouhan RS, Gandhi S. Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian most cancers. Biosci Rep. 2022;42(2):BSR20212622.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, et al. Biocompatible nanoclusters with excessive heating effectivity for systemically delivered magnetic hyperthermia. ACS Nano. 2019;13:6383–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Xia M, Zhou Z, Hu X, Wang J, Zhang M, et al. p53 promoted ferroptosis in ovarian most cancers cells handled with human serum incubated-superparamagnetic iron oxides. Int J Nanomedicine. 2021;16:283–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, et al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded beta-cyclodextrin potential for ovarian most cancers dual-targeting remedy. Mater Sci Eng C Mater Biol Appl. 2014;42:325–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braim FS, Razak NN, Aziz AA, Ismael LQ, Sodipo BK. Ultrasound assisted chitosan coated iron oxide nanoparticles: Affect of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. Ultrason Sonochem. 2022;88: 106072.

    Article 

    Google Scholar
     

  • Moskvin M, Babic M, Reis S, Cruz MM, Ferreira LP, Carvalho MD, et al. Organic analysis of surface-modified magnetic nanoparticles as a platform for colon most cancers cell theranostics. Colloids Surf B Biointerfaces. 2018;161:35–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Xie J, Wu H, Zang F, Ma M, Hua Z, et al. Enhancing sensitivity of magnetic resonance imaging through the use of a dual-targeted magnetic iron oxide nanoprobe. Colloids Surf B Biointerfaces. 2018;161:339–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathieu P, Coppel Y, Respaud M, Nguyen QT, Boutry S, Laurent S, et al. Silica coated iron/iron oxide nanoparticles as a nano-platform for T2 weighted magnetic resonance imaging. Molecules. 2019;24(24):4629.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility research of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical utility. Sci Rep. 2017;7:46513.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, et al. Iron oxide nanoparticle agglomeration influences dose charges and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology. 2014;8:663–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, et al. Theranostic MUC-1 aptamer focused gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal remedy of colon most cancers. Colloids Surf B Biointerfaces. 2016;143:224–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang SJ, Tseng SY, Wang CH, Younger TH, Chen KC, Shieh MJ. Magnetic nanomedicine for CD133-expressing most cancers remedy utilizing locoregional hyperthermia mixed with chemotherapy. Nanomedicine. 2020;15:2543–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindemann A, Ludtke-Buzug Okay, Fraderich BM, Grafe Okay, Pries R, Wollenberg B. Organic influence of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck most cancers cells. Int J Nanomedicine. 2014;9:5025–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas RG, Moon MJ, Lee H, Sasikala ARK, Kim CS, Park IK, et al. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for most cancers prognosis and hyperthermia remedy. Carbohydr Polym. 2015;131:439–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unterweger H, Tietze R, Janko C, Zaloga J, Lyer S, Durr S, et al. Improvement and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for focused drug supply. Int J Nanomedicine. 2014;9:3659–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, et al. PSMA-targeting iron oxide magnetic nanoparticles improve MRI of preclinical prostate most cancers. Nanomedicine. 2015;10:375–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wadajkar AS, Menon JU, Tsai YS, Gore C, Dobin T, Gandee L, Kangasniemi Okay, et al. Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials. 2013;34:3618–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato A, Itcho N, Ishiguro H, Okamoto D, Kobayashi N, Kawai Okay, et al. Magnetic nanoparticles of Fe3O4 improve docetaxel-induced prostate most cancers cell demise. Int J Nanomedicine. 2013;8:3151–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed MSU, Salam AB, Yates C, Willian Okay, Jaynes J, Turner T, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug supply system for the remedy and imaging of prostate most cancers. Int J Nanomedicine. 2017;12:6973–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soleymani M, Velashjerdi M, Shaterabadi Z, Barati A. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia remedy and focusing on CD44-overexpressing most cancers cells. Carbohydr Polym. 2020;237: 116130.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Wang Z, Xiang H, Xu X, Zou J, Lu C. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging. ACS Appl Mater Interfaces. 2021;13:33850–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu X, Zhou H, Liang Z, Feng J, Lu Y, Huang L, et al. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors. J Nanobiotechnology. 2022;20:350.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao H, Zhang T, Zhang Y, Chen Y, Liu B, Wu J, et al. Ellipsoidal magnetite nanoparticles: a brand new member of the magnetic-vortex nanoparticles household for environment friendly magnetic hyperthermia. J Mater Chem B. 2020;8:515–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attari E, Nosrati H, Danafar H, Kheiri MH. Methotrexate anticancer drug supply to breast most cancers cell traces by iron oxide magnetic based mostly nanocarrier. J Biomed Mater Res A. 2019;107:2492–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calero M, Chiappi M, Lazaro-Carrillo A, Rodriguez MJ, Chichon FJ, Crosbie-Staunton Okay, et al. Characterization of interplay of magnetic nanoparticles with breast most cancers cells. J Nanobiotechnology. 2015;13:16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Lin H, Zhao M, Dai C, Zhang S, Peng W, et al. 2D superparamagnetic tantalum carbide composite mxenes for environment friendly breast-cancer theranostics. Theranostics. 2018;8:1648–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Peng Y, Xie X, Feng Y, Li T, Li S, et al. Dendrimer-functionalized superparamagnetic nanobeacons for real-time detection and depletion of HSP90alpha mRNA and MR imaging. Theranostics. 2019;9:5784–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kucharczyk Okay, Kaczmarek Okay, Jozefczak A, Slachcinski M, Mackiewicz A, Dams-Kozlowska H. Hyperthermia remedy of most cancers cells by the appliance of focused silk/iron oxide composite spheres. Mater Sci Eng C Mater Biol Appl. 2021;120: 111654.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kermanian M, Sadighian S, Naghibi M, Khoshkam M. PVP Floor-protected silica coated iron oxide nanoparticles for MR imaging utility. J Biomater Sci Polym Ed. 2021;32:1356–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran TT, Tran PH, Yoon TJ, Lee BJ. Fattigation-platform theranostic nanoparticles for most cancers remedy. Mater Sci Eng C Mater Biol Appl. 2017;75:1161–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serio F, Silvestri N, Kumar Avugadda S, Nucci GEP, Nitti S, Onesto V, et al. Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic results on most cancers cells. J Colloid Interface Sci. 2022;607:34–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gawali SL, Shelar SB, Gupta J, Barick KC, Hassan PA. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia utility. Int J Biol Macromol. 2021;166:851–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Sene S, Mielcarek AM, Miraux S, Menguy N, Ihiawakrim D, et al. Hierarchical superparamagnetic metal-organic framework nanovectors as anti-inflammatory nanomedicines. J Mater Chem B. 2023;11:3195–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calero M, Gutierrez L, Salas G, Luengo Y, Lazaro A, Acedo P, et al. Environment friendly and secure internalization of magnetic iron oxide nanoparticles: two elementary necessities for biomedical purposes. Nanomedicine. 2014;10:733–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang Thi TT, Nguyen Tran DH, Bach LG, Vu-Quang H, Nguyen DC, Park KD, et al. Purposeful magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug supply. Pharmaceutics. 2019;11(3):120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Z, Tune X, Li X, Su T, Qi S, Qiao R, et al. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric most cancers mannequin. Nanoscale. 2014;6:14343–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug supply. J Inorg Biochem. 2019;192:72–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Deng X, Li X, Xue D, Zhang H, Liu T, et al. A visualized investigation on the atomic scale of the antitumor impact of magnetic nanomedicine on gastric most cancers cells. Nanomedicine. 2014;9:1389–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, et al. Atranorin pushed by nano supplies SPION result in ferroptosis of gastric most cancers stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci. 2022;19:1680–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moskvin M, Huntosova V, Herynek V, Matous P, Michalcova A, Lobaz V, et al. In vitro mobile exercise of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf B Biointerfaces. 2021;204: 111824.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das P, Salvioni L, Malatesta M, Vurro F, Mannucci S, Gerosa M, et al. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with excessive relaxivity and particular absorption price for environment friendly magnetic resonance imaging and magnetic hyperthermia. J Colloid Interface Sci. 2020;579:186–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Wang Z, Ma M, Chen Z, Tang X, Wang Z. Self-assembly iron oxide nanoclusters for photothermal-mediated synergistic chemo/chemodynamic remedy. J Immunol Res. 2021;2021:9958239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alahdal HM, Abdullrezzaq SA, Amin HIM, Alanazi SF, Jalil AT, et al. Hint elements-based Auroshell gold@hematite nanostructure: inexperienced synthesis and their hyperthermia remedy. IET Nanobiotechnol. 2023;17:22–31.

    Article 

    Google Scholar
     

  • Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma remedy: a combinational method for enhanced supply of nanoparticles. Sci Rep. 2020;10:11292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Sandre O, Wang Okay, Shi H, Xiong Okay, Huang YB, et al. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with excessive density of magnetic materials. Mater Sci Eng C Mater Biol Appl. 2019;104: 109920.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon J, Mao X, Lee HA, Oh S, Tufa LT, Choi JY, et al. Iron-Palladium magnetic nanoparticles for decolorizing rhodamine B and scavenging reactive oxygen species. J Colloid Interface Sci. 2021;588:646–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kluge M, Leder A, Hillebrandt KH, Struecker B, Geisel D, Denecke T, et al. The magnetic area of magnetic resonance imaging methods doesn’t have an effect on cells labeled with micrometer-sized iron oxide particles. Tissue Eng Half C Strategies. 2017;23:412–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, et al. Biocompatible peptide-coated ultrasmall superparamagnetic iron oxide nanoparticles for in vivo contrast-enhanced magnetic resonance imaging. ACS Nano. 2018;12:6480–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saraswathy A, Nazeer SS, Nimi N, Santhakumar H, Suma PR, Jibin Okay, et al. Asialoglycoprotein receptor focused optical and magnetic resonance imaging and remedy of liver fibrosis utilizing pullulan stabilized multi-functional iron oxide nanoprobe. Sci Rep. 2021;11:18324.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moise S, Cespedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND. The mobile magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep. 2017;7:39922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovach AK, Gambino JM, Nguyen V, Nelson Z, Szasz T, Liao J, et al. Potential preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a focused drug supply system for the induction of cell demise in rodent osteosarcoma cells. Biores Open Entry. 2016;5:299–307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen VT, Kim HH, et al. Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia most cancers remedy. Nanomaterials. 2017;7(12):426.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiryaghoubi N, Abdolahinia ED, Nakhlband A, Aslzad S, Fathi M, Barar J, et al. Good chitosan-folate hybrid magnetic nanoparticles for focused supply of doxorubicin to osteosarcoma cells. Colloids Surf B Biointerfaces. 2022;220: 112911.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao C, Han Q, Qin H, Yan H, Qian Z, Ma Z, et al. Biocompatible hyperbranched polyester magnetic nanocarrier for stimuli-responsive drug launch. J Biomater Sci Polym Ed. 2017;28:616–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang QT, Hu QQ, Wen ZF, Li YL. Iron oxide nanoparticles inhibit tumor progress by ferroptosis in diffuse giant B-cell lymphoma. Am J Most cancers Res. 2023;13:498–508.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune L, Chen Y, Ding J, Wu H, Zhang W, Ma M, et al. Rituximab conjugated iron oxide nanoparticles for focused imaging and enhanced remedy towards CD20-positive lymphoma. J Mater Chem B. 2020;8:895–907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai X, Yao J, Zhong Y, Li Y, Lu Q, Zhang Y, et al. Preparation and characterization of Fe3O4@MTX magnetic nanoparticles for thermochemotherapy of main central nervous system lymphoma in vitro and in vivo. Int J Nanomedicine. 2019;14:9647–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin YR, Chan CH, Lee HT, Cheng SJ, Yang JW, Chang SJ, et al. Distant magnetic management of autophagy in mouse B-lymphoma cells with iron oxide nanoparticles. Nanomaterials. 2019;9(4):551.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takke A, Shende P. Magnetic-core-based silibinin nanopolymeric carriers for the remedy of renal cell most cancers. Life Sci. 2021;275: 119377.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu C, Li J, Xu Okay, Yang C, Wang J, Han C, et al. Fabrication of mAb G250-SPIO molecular magnetic resonance imaging nanoprobe for the particular detection of renal cell carcinoma in vitro. PLoS ONE. 2014;9: e101898.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alphandéry E. Iron oxide nanoparticles for therapeutic purposes. Drug Discov Right this moment. 2020;25:141–9.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Wei X, Tao F, Deng C, Lv C, Chen C, et al. The potential utility of nanomaterials for ferroptosis-based most cancers remedy. Biomed Mater. 2021;16: 042013.

    Article 
    CAS 

    Google Scholar
     

  • Mulens-Arias V, Rojas JM, Barber DF. Using iron oxide nanoparticles to reprogram macrophage responses and the immunological tumor microenvironment. Entrance Immunol. 2021;12(12): 693709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-responsive iron oxide nanotheranostics: a flexible and highly effective method for most cancers remedy. Adv Healthc Mater. 2021;10(5): e2001044.

    Article 
    PubMed 

    Google Scholar
     

  • Alphandéry E. Biodistribution and focusing on properties of iron oxide nanoparticles for remedies of most cancers and iron anemia illness. Nanotoxicology. 2019;13:573–96.

    Article 
    PubMed 

    Google Scholar
     

  • Fèvre RL, Durand-Dubief M, Chebbi I, Mandawala C, Lagroix F, Valet JP, et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia remedy of glioblastoma. Theranostics. 2017;7:4618–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan UM, Teller S, Sendler M, Palankar R, Brandt C, Schwaiger T, et al. Tumour-specific supply of siRNA-coupled superparamagnetic iron oxide nanoparticles, focused towards PLK1, stops development of pancreatic most cancers. Intestine. 2016;65:1838–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, et al. Magnetic particle focusing on for prognosis and remedy of lung cancers. J Contr Launch. 2020;328:776–91.

    Article 
    CAS 

    Google Scholar
     

  • Saber-Samandari S, Mohammadi-Aghdam M, Saber-Samandari S. A novel magnetic bifunctional nanocomposite scaffold for photothermal remedy and tissue engineering. Int J Biol Macromol. 2019;138:810–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tampieri A, Iafisco M, Sandri M, Panseri S, Cunha C, Sprio S, et al. Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative course of. ACS Appl Mater Interfaces. 2014;6:15697–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labusca L, Herea DD, Danceanu CM, Minuti AE, Stavila C, Grigoras M, et al. The impact of magnetic area publicity on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Mater Sci Eng C Mater Biol Appl. 2020;109: 110652.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin H, Qian Y, Dai Y, Qiao S, Huang C, Lu L, et al. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced most cancers immunotherapy. Theranostics. 2016;6:2000–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su H, Mou Y, An Y, Han W, Huang X, Xia G, et al. The migration of artificial magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomedicine. 2013;8:3737–44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas JM, Gavilan H, Dedo V, Lorente-Sorolla E, Sanz-Ortega L, Silva GB, et al. Time-course evaluation of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater. 2017;58:181–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, et al. Assessing the mixture of magnetic area stimulation, iron oxide nanoparticles, and aligned electrospun fibers for selling neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater. 2021;131:302–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guldris N, Argibay B, Gallo J, Iglesias-Rey R, Carbó-Argibay E, Kolenko YV, et al. Magnetite nanoparticles for stem cell labeling with excessive effectivity and long-term in vivo monitoring. Bioconjug Chem. 2016;28:362–70.

    Article 
    PubMed 

    Google Scholar
     

  • Silva LH, Silva JR, Ferreira GA, Silva RC, Lima EC, Azevedo RB, et al. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: evaluation of biocompatibility and potential purposes. J Nanobiotechnology. 2016;14:59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Y, Liu W, Zhang B, Wang B, Wang L, Liu S, et al. Systematic intracellular biocompatibility assessments of superparamagnetic iron oxide nanoparticles in human umbilical wire mesenchyme stem cells in testifying its reusability for internal cell monitoring by MRI. J Biomed Nanotechnol. 2019;15:2179–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daya R, Xu C, Nguyen NT, Liu HH. Angiogenic hyaluronic acid hydrogels with curcumin-coated magnetic nanoparticles for tissue restore. ACS Appl Mater Interfaces. 2022;14:11051–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boitard C, Curcio A, Rollet AL, Wilhelm C, Menager C, Griffete N. Organic destiny of magnetic protein-specific molecularly imprinted polymers: toxicity and degradation. ACS Appl Mater Interfaces. 2019;11:35556–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider MG, Azcona P, Campelo A, Massheimer V, Agotegaray M, Lassalle V. Magnetic nanoplatform with novel potential for the remedy of bone pathologies: drug loading and biocompatibility on blood and bone cells. IEEE Trans Nanobiosci. 2023;22:11–8.

    Article 
    CAS 

    Google Scholar
     

  • Carreira SC, Armstrong JP, Seddon AM, Perriman AW, Hartley-Davies R, Schwarzacher W. Extremely-fast stem cell labelling utilizing cationised magnetoferritin. Nanoscale. 2016;8:7474–83.

    Article 

    Google Scholar
     

  • Bianco LD, Spizzo F, Yang Y, Greco G, Gatto ML, Barucca G, et al. Silk fibroin movies with embedded magnetic nanoparticles: analysis of the magneto-mechanical stimulation impact on osteogenic differentiation of stem cells. Nanoscale. 2022;14:14558–74.

    Article 
    PubMed 

    Google Scholar
     

  • Pongrac IM, Radmilovic MD, Ahmed LB, Mlinaric H, Regul J, Skokic S, et al. D-mannose-coating of maghemite nanoparticles improved labeling of neural stem cells and allowed their visualization by ex vivo MRI after transplantation within the mouse mind. Cell Transplant. 2019;28:553–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taruno Okay, Kurita T, Kuwahata A, Yanagihara Okay, Enokido Okay, Katayose Y, et al. Multicenter medical trial on sentinel lymph node biopsy utilizing superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J Surg Oncol. 2019;120:1391–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi Okay, Kaneko M, et al. Handheld magnetic probe with everlasting magnet and corridor sensor for figuring out sentinel lymph nodes in breast most cancers sufferers. Sci Rep. 2018;8:1195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vural V, Yilmaz OC. The Turkish SentiMAG feasibility trial: preliminary outcomes. Breast Most cancers. 2020;27:261–5.

    Article 
    PubMed 

    Google Scholar
     

  • Karakatsanis A, Olofsson H, Stalberg P, Bergkvist L, Abdsaleh S, Warnberg F. Simplifying logistics and avoiding the pointless in sufferers with breast most cancers present process sentinel node biopsy. A potential feasibility trial of the preoperative injection of tremendous paramagnetic iron oxide nanoparticles. Scand J Surg. 2018;107:130–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarado MD, Mittendorf EA, Teshome M, Thompson AM, Daring RJ, Gittleman MA. SentimagIC: a non-inferiority trial evaluating superparamagnetic iron oxide versus technetium-99m and blue dye within the detection of axillary sentinel nodes in sufferers with early-stage breast most cancers. Ann Surg Oncol. 2019;26:3510–6.

    Article 
    PubMed 

    Google Scholar
     

  • Houpeau JL, Chauvet MP, Guillemin F, Bendavid-Athias C, Charitansky H, Kramar A, et al. Sentinel lymph node identification utilizing superparamagnetic iron oxide particles versus radioisotope: The French Sentimag feasibility trial. J Surg Oncol. 2016;113:501–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karakatsanis A, Christiansen PM, Fischer L, Hedin C, Pistioli L, Sund M, et al. The Nordic SentiMag trial: a comparability of tremendous paramagnetic iron oxide (SPIO) nanoparticles versus Tc(99) and patent blue within the detection of sentinel node (SN) in sufferers with breast most cancers and a meta-analysis of earlier research. Breast Most cancers Res Deal with. 2016;157:281–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubio IT, Rodriguez-Revuelto R, Espinosa-Bravo M, Siso C, Rivero J, Esgueva A. A randomized research evaluating completely different doses of superparamagnetic iron oxide tracer for sentinel lymph node biopsy in breast most cancers: the SUNRISE research. Eur J Surg Oncol. 2020;46:2195–201.

    Article 
    PubMed 

    Google Scholar
     

  • Man V, Suen D, Kwong A. Use of superparamagnetic iron oxide (SPIO) versus standard method in sentinel lymph node detection for breast most cancers: a randomised managed trial. Ann Surg Oncol. 2023;30:3237–44.

    Article 
    PubMed 

    Google Scholar
     

  • Aldenhoven L, Frotscher C, Korver-Steeman R, Martens MH, Kuburic D, Janssen A, et al. Sentinel lymph node mapping with superparamagnetic iron oxide for melanoma: a pilot research in wholesome individuals to ascertain an optimum MRI workflow protocol. BMC Most cancers. 2022;22:1062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birkhauser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, et al. Mixed ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of sufferers with bladder and prostate most cancers. Eur Urol. 2013;64:953–60.

    Article 
    PubMed 

    Google Scholar
     

  • Muehe AM, Siedek F, Theruvath AJ, Seekins J, Spunt SL, Pribnow A, et al. Differentiation of benign and malignant lymph nodes in pediatric sufferers on ferumoxytol-enhanced PET/MRI. Theranostics. 2020;10:3612–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilmaz A, Dengler MA, Kuip H, Yildiz H, Rosch S, Klumpp S, et al. Imaging of myocardial infarction utilizing ultrasmall superparamagnetic iron oxide nanoparticles: a human research utilizing a multi-parametric cardiovascular magnetic resonance imaging method. Eur Coronary heart J. 2013;34:462–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stirrat CG, Alam SR, MacGillivray TJ, Grey CD, Dweck MR, Dibb Okay, et al. Ferumoxytol-enhanced magnetic resonance imaging in acute myocarditis. Coronary heart. 2018;104:300–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Florian A, Ludwig A, Rösch S, Yildiz H, Sechtem U, Yilmaz A. Constructive impact of intravenous iron-oxide administration on left ventricular remodelling in sufferers with acute ST-elevation myocardial infarction-a cardiovascular magnetic resonance (CMR) research. J Cardiovasc Magn Reson. 2014;173(2):184–9.


    Google Scholar
     

  • Aoki T, Saito M, Koseki H, Tsuji Okay, Tsuji A, Murata Okay, et al. Investigators, macrophage imaging of cerebral aneurysms with ferumoxytol: an exploratory research in an animal mannequin and in sufferers. J Stroke Cerebrovasc Dis. 2017;26:2055–64.

    Article 
    PubMed 

    Google Scholar
     

  • Investigators MRS. Aortic wall irritation predicts stomach aortic aneurysm enlargement, rupture, and wish for surgical restore. Circulation. 2017;136:787–97.

    Article 

    Google Scholar
     

  • Khan S, Amin FM, Fliedner FP, Christensen CE, Tolnai D, Younis S, et al. Investigating macrophage-mediated irritation in migraine utilizing ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging. Cephalalgia. 2019;39:1407–20.

    Article 
    PubMed 

    Google Scholar
     

  • Aghighi M, Pisani L, Theruvath AJ, Muehe AM, Donig J, Khan R, et al. Ferumoxytol is just not retained in kidney allografts in sufferers present process acute rejection. Mol Imaging Biol. 2018;20:139–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theruvath AJ, Nejadnik H, Muehe AM, Gassert F, Lacayo NJ, Goodman SB, et al. Monitoring cell transplants in femoral osteonecrosis with magnetic resonance imaging: a proof-of-concept research in sufferers. Clin Most cancers Res. 2018;24:6223–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Mao F, Wang W, Yang Y, Bai Z. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity evaluation in vitro. ACS Appl Mater Interfaces. 2015;7:14983–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bona KD, Xu Y, Grey M, Truthful D, Hayles H, Milad L, et al. Brief- and long-term results of prenatal publicity to iron oxide nanoparticles: affect of floor cost and dose on developmental and reproductive toxicity. Int J Mol Sci. 2015;16:30251–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agotegaray MA, Campelo AE, Zysler RD, Gumilar F, Bras C, Gandini A, et al. Magnetic nanoparticles for drug focusing on: from design to insights into systemic toxicity. Preclinical analysis of hematological, vascular and neurobehavioral toxicology. Biomater Sci. 2017;5:772–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments