Sinova, J., Valenzuela, S. O., Wunderlich, J., Again, C. H. & Jungwirth, T. Spin Corridor results. Rev. Mod. Phys. 87, 1213–1260 (2015).
Rojas-Sánchez, J.-C. et al. Spin to cost conversion at room temperature by spin pumping into a brand new kind of topological insulator: α-Sn movies. Phys. Rev. Lett. 116, 096602 (2016).
Li, C. H. et al. Electrical detection of charge-current-induced spin polarization resulting from spin-momentum locking in Bi2Se3. Nat. Nanotechnol. 9, 218–224 (2014).
Jungwirth, T., Wunderlich, J. & Olejník, Ok. Spin Corridor impact units. Nat. Mater. 11, 382–390 (2012).
Kato, Y. Ok., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Statement of the spin Corridor impact in semiconductors. Science 306, 1910–1913 (2004).
Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental statement of the spin-Corridor impact in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).
Liu, L. et al. Spin-torque switching with the large spin Corridor impact of tantalum. Science 336, 555–558 (2012).
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Present-induced switching of perpendicularly magnetized magnetic layers utilizing spin torque from the spin Corridor impact. Phys. Rev. Lett. 109, 096602 (2012).
Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and purposes. Rev. Mod. Phys. 76, 323–410 (2004).
Gibbons, J. D., MacNeill, D., Buhrman, R. A. & Ralph, D. C. Reorientable spin route for spin present produced by the anomalous Corridor impact. Phys. Rev. Appl. 9, 064033 (2018).
Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Corridor impact. Nat. Electron. 1, 120–123 (2018).
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition steel dichalcogenides. Nat. Phys. 10, 343–350 (2014).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and different Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Mak, Ok. F., Xiao, D. & Shan, J. Mild–valley interactions in 2D semiconductors. Nat. Photonics 12, 451–460 (2018).
Lee, J., Wang, Z., Xie, H., Mak, Ok. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).
Mak, Ok. F., McGill, Ok. L., Park, J. & McEuen, P. L. The valley Corridor impact in MoS2 transistors. Science 344, 1489–1492 (2014).
Tschirhart, C. L. et al. Intrinsic spin Corridor torque in a moiré Chern magnet. Nat. Phys. 19, 807–813 (2023).
Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Liu, J. & Dai, X. Orbital magnetic states in moiré graphene programs. Nat. Rev. Phys. 3, 367–382 (2021).
Mak, Ok. F. & Shan, J. Semiconductor moiré supplies. Nat. Nanotechnol. 17, 686–695 (2022).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Devakul, T. & Fu, L. Quantum anomalous Corridor impact from inverted cost switch hole. Phys. Rev. X 12, 021031 (2022).
Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition steel dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).
Rademaker, L. Spin-orbit coupling in transition steel dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).
Pan, H., Xie, M., Wu, F. & Das Sarma, S. Topological phases in AB-stacked MoTe2/WSe2: Z2 topological insulators, Chern insulators, and topological cost density waves. Phys. Rev. Lett. 129, 056804 (2022).
Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Corridor impact. Phys. Rev. Lett. 95, 146802 (2005).
Kane, C. L. & Mele, E. J. Quantum spin Corridor impact in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Fengcheng, W., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition steel dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).
Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, Ok. F. & Legislation, Ok. T. Valley-polarized quantum anomalous Corridor state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).
Mai, P., Zhao, J., Feldman, B. E. & Phillips, P. W. 1/4 is the brand new 1/2: Interplay-induced unification of quantum anomalous and spin Corridor results. Preprint at https://doi.org/10.48550/arXiv.2210.11486 (2022).
Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Preprint at http://arxiv.org/sabs/2207.02312 (2022).
Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Nature 600, 641–646 (2021).
Tao, Z. et al. Valley-coherent quantum anomalous Corridor state in AB-stacked MoTe2/WSe2 bilayers. Preprint at https://doi.org/10.48550/arXiv.2208.07452 (2022).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Wang, X. et al. Mild-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Li, T. et al. Steady Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).
Lau, C. N., Bockrath, M. W., Mak, Ok. F. & Zhang, F. Reproducibility within the fabrication and physics of moiré supplies. Nature 602, 41–50 (2022).
Yu, S.-B., Solar, S.-H., Zhou, M., Zhang, D. & Chang, Ok. Present-induced spin polarization in Janus WSSe monolayer. Phys. Rev. B 107, 125426 (2023).
Yu, S.-B., Zhou, M., Zhang, D. & Chang, Ok. Spin Corridor impact within the monolayer Janus compound MoSSe enhanced by Rashba spin-orbit coupling. Phys. Rev. B 104, 075435 (2021).
Lee, J., Mak, Ok. F. & Shan, J. Electrical management of the valley Corridor impact in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).
Vila, M. et al. Low-symmetry topological supplies for giant charge-to-spin interconversion: the case of transition steel dichalcogenide monolayers. Phys. Rev. Res. 3, 043230 (2021).
Music, P. et al. Coexistence of enormous standard and planar spin Corridor impact with lengthy spin diffusion size in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).
Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer transition steel dichalcogenide. Nat. Commun. 12, 642 (2021).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Beconcini, M., Taddei, F. & Polini, M. Nonlocal topological valley transport at massive valley Corridor angles. Phys. Rev. B 94, 121408 (2016).