Yum, S., Li, M., Frankel, A. E. & Chen, Z. J. Roles of the cGAS-STING pathway in most cancers immunosurveillance and immunotherapy. Annu. Rev. Most cancers Biol. 3, 323–344 (2019).
Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGAS–STING pathway in most cancers. Most cancers Discov. 10, 26 (2020).
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, kind I interferon-dependent innate immunity. Nature 461, 788–792 (2009).
Barber, G. N. STING: an infection, irritation and most cancers. Nat. Rev. Immunol. 15, 760–770 (2015).
Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Kind I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).
Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).
Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell–resistant tumors in response to STING agonists. Sci. Immunol. 5, eaaz2738 (2020).
Nakamura, T. et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis by way of NK cell activation. J. Immunother. Most cancers 9, e002852 (2021).
Fu, J. et al. STING agonist formulated most cancers vaccines can remedy established tumors immune to PD-1 blockade. Sci. Transl. Med. 7, 283ra252 (2015).
Dosta, P. et al. Supply of stimulator of interferon genes (STING) agonist utilizing polypeptide-modified dendrimer nanoparticles within the remedy of melanoma. Adv. NanoBiomed Res. 1, 2100006 (2021).
Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that prompts STING. Nature 498, 380–384 (2013).
Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).
Zhang, X. et al. Cyclic GMP-AMP containing combined phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).
Lee, S. E. et al. Enchancment of STING-mediated most cancers immunotherapy utilizing immune checkpoint inhibitors as a game-changer. Most cancers Immunol. Immunother. 71, 3029–3042 (2022).
Jneid, B. et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci. Immunol. 8, eabn6612 (2023).
Wang, H. et al. cGAS is crucial for the antitumor impact of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).
Meric-Bernstam, F. et al. Part Ib examine of MIW815 (ADU-S100) together with spartalizumab (PDR001) in sufferers (pts) with superior/metastatic strong tumors or lymphomas. J. Clin. Oncol. 37, 2507 (2019).
Harrington, Okay. J. et al. Preliminary outcomes of the first-in-human (FIH) examine of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or together with pembrolizumab (pembro) in sufferers with superior strong tumors or lymphomas. Ann. Oncol. 29, VIII712 (2018).
Shae, D. et al. Endosomolytic polymersomes improve the exercise of cyclic dinucleotide STING agonists to reinforce most cancers immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).
Watkins-Schulz, R. et al. A microparticle platform for STING-targeted immunotherapy enhances pure killer cell- and CD8+ T cell-mediated anti-tumor immunity. Biomaterials 205, 94–105 (2019).
Koshy, S. T., Cheung, A. S., Gu, L., Graveline, A. R. & Mooney, D. J. Liposomal supply enhances immune activation by STING agonists for most cancers immunotherapy. Adv. Biosyst. 1, 1600013 (2017).
Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).
Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).
Korangath, P. et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in fashions of breast most cancers. Sci. Adv. 6, eaay1601 (2020).
Dane, E. L. et al. STING agonist supply by tumour-penetrating PEG-lipid nanodiscs primes sturdy anticancer immunity. Nat. Mater. 21, 710–720 (2022).
Solar, X. et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for native and systemic most cancers metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).
Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Supply applied sciences for most cancers immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).
Wehbe, M. et al. Nanoparticle supply improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration. J. Management. Launch 330, 1118–1129 (2021).
Lewis, S. M., Williams, A. & Eisenbarth, S. C. Construction and performance of the immune system within the spleen. Sci. Immunol. 4, eaau6085 (2019).
Bronte, V. & Pittet, MikaelJ. The spleen in native and systemic regulation of immunity. Immunity 39, 806–818 (2013).
Segovia, N., Dosta, P., Cascante, A., Ramos, V. & Borrós, S. Oligopeptide-terminated poly(β-amino ester)s for extremely environment friendly gene supply and intracellular localization. Acta Biomater. 10, 2147–2158 (2014).
Dosta, P., Ramos, V. & Borrós, S. Steady and environment friendly era of poly(β-amino ester)s for RNAi supply. Mol. Syst. Des. Eng. 3, 677–689 (2018).
Dosta, P. et al. Supply of anti-microRNA-712 to infected endothelial cells utilizing poly(beta-amino ester) nanoparticles conjugated with VCAM-1 concentrating on peptide. Adv. Healthcare Mater. 10, 2001894 (2021).
Nunez-Toldra, R. et al. Enchancment of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(beta-amino ester)s. Acta Biomater. 53, 152–164 (2017).
Dosta, P. et al. Supply of siRNA to endothelial cells in vivo utilizing lysine/histidine oligopeptide-modified poly(beta-amino ester) nanoparticles. Cardiovasc. Eng. Technol. 12, 114–125 (2021).
Dosta, P., Segovia, N., Cascante, A., Ramos, V. & Borrós, S. Floor cost tunability as a strong technique to regulate electrostatic interplay for prime effectivity silencing, utilizing tailor-made oligopeptide-modified poly(beta-amino ester)s (PBAEs). Acta Biomater. 20, 82–93 (2015).
Puigmal, N., Ramos, V., Artzi, N. & Borrós, S. Poly(β-amino ester)s-based supply programs for focused transdermal vaccination. Pharmaceutics 15, 1262 (2023).
Vyskocil, S. et al. Identification of novel carbocyclic pyrimidine cyclic dinucleotide STING agonists for antitumor immunotherapy utilizing systemic intravenous route. J. Med. Chem. 64, 6902–6923 (2021).
Alouane, A., Labruère, R., Le Saux, T., Schmidt, F. & Jullien, L. Self-immolative spacers: kinetic points, construction–property relationships, and functions. Angew. Chem. Int. Ed. 54, 7492–7509 (2015).
Bargh, J. D., Isidro-Llobet, A., Parker, J. S. & Spring, D. R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).
Gandini, A. The furan/maleimide Diels–Alder response: a flexible click on–unclick instrument in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013).
Froidevaux, V. et al. Examine of the Diels–Alder and retro-Diels–Alder response between furan derivatives and maleimide for the creation of latest supplies. RSC Adv. 5, 37742–37754 (2015).
Harris, J. M. & Chess, R. B. Impact of pegylation on prescription drugs. Nat. Rev. Drug Discov. 2, 214–221 (2003).
Fornaguera, C. et al. mRNA supply system for concentrating on antigen-presenting cells in vivo. Adv. Healthcare Mater. 7, 1800335 (2018).
Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic limitations to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).
Akdis, C. A. & Blaser, Okay. Mechanisms of interleukin-10-mediated immune suppression. Immunology 103, 131–136 (2001).
Brown, M. A. & Hural, J. Capabilities of IL-4 and management of its expression. Crit. Rev. Immunol. 17, 1–32 (1997).
Goswami, R. & Kaplan, M. H. A short historical past of IL-9. J. Immunol. 186, 3283 (2011).
Harlin, H. et al. Chemokine expression in melanoma metastases related to CD8+ T-cell recruitment. Most cancers Res. 69, 3077–3085 (2009).
Sivick, Okay. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085.e3075 (2018).
Lechner, M. G. et al. Immunogenicity of murine strong tumor fashions as a defining function of in vivo conduct and response to immunotherapy. J. Immunother. 36, 477–489 (2013).
Fitzgerald-Bocarsly, P., Dai, J. & Singh, S. Plasmacytoid dendritic cells and sort I IFN: 50 years of convergent historical past. Cytokine Progress Issue Rev. 19, 3–19 (2008).
Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).
Spitzer, M. H. et al. Systemic immunity is required for efficient most cancers immunotherapy. Cell 168, 487–502.e415 (2017).
Poncette, L., Bluhm, J. & Blankenstein, T. The position of CD4 T cells in rejection of strong tumors. Curr. Opin. Immunol. 74, 18–24 (2022).
Schadt, L. et al. Most cancers-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248.e1237 (2019).
Carozza, J. A. et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter concerned in radiation-induced anticancer immunity. Nat. Most cancers 1, 184–196 (2020).
Madaan, A., Verma, R., Singh, A. T., Jain, S. Okay. & Jaggi, M. A stepwise process for isolation of murine bone marrow and era of dendritic cells. J. Biol. Strategies 1, e1 (2014).