Monday, October 23, 2023
HomeNanotechnologyInhibition of acute complement responses in the direction of bolus-injected nanoparticles utilizing...

Inhibition of acute complement responses in the direction of bolus-injected nanoparticles utilizing focused short-circulating regulatory proteins


  • La-Beck, N. M., Islam, M. R. & Markiewski, M. M. Nanoparticle-induced complement activation: implications for most cancers nanomedicine. Entrance. Immunol. 11, 603039 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moghimi, S. M., Simberg, D., Papini, E. & Farhangrazi, Z. S. Complement activation by drug carriers and particulate prescribed drugs: rules, challenges and alternatives. Adv. Drug Deliv. Rev. 157, 83–95 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ricklin, D., Hajishengallis, G., Yang, Okay. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Szebeni, J., Simberg, D., Gonzalez-Fernandez, A., Barenholz, Y. & Dobrovolskaia, M. A. Roadmap and technique for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 13, 1100–1108 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Moghimi, S. M. et al. Materials properties in complement activation. Adv. Drug Deliv. Rev. 63, 1000–1007 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tavano, R. et al. C1q-mediated complement activation and C3 opsonization set off recognition of stealth poly(2-methyl-2-oxazoline)-coated cilica nanoparticles by human phagocytes. ACS Nano 12, 5834–5847 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Inturi, S. et al. Modulatory function of floor coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte pptake. ACS Nano 9, 10758–10768 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A., Aggarwal, P., Corridor, J. B. & McNeil, S. E. Preclinical research to know nanoparticle interplay with the immune system and its potential results on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ricklin, D. & Lambris, J. D. Complement in immune and inflammatory problems: pathophysiological mechanisms. J. Immunol. 190, 3831–3838 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moghimi, S. M. Most cancers nanomedicine and the complement system activation paradigm: anaphylaxis and tumour progress. J. Management. Launch 190, 556–562 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Forneris, F. et al. Regulators of complement exercise mediate inhibitory mechanisms by way of a typical C3b-binding mode. EMBO J. 35, 1133–1149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, C. Q., Lambris, J. D. & Ricklin, D. Safety of host cells by complement regulators. Immunol. Rev. 274, 152–171 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Morgan, B. P. & Harris, C. L. Complement, a goal for remedy in inflammatory and degenerative illnesses. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mastellos, D. C., Ricklin, D. & Lambris, J. D. Scientific promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 18, 707–729 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Smith, G. P. & Smith, R. A. Membrane-targeted complement inhibitors. Mol. Immunol. 38, 249–255 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gaikwad, H. et al. Complement inhibitors block complement C3 opsonization and enhance focusing on selectivity of nanoparticles in blood. Bioconjugate Chem. 31, 1844–1856 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gifford, G. et al. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J. Management. Launch 302, 181–189 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Belling, J. N. et al. Stealth immune properties of graphene oxide enabled by surface-bound complement issue H. ACS Nano 10, 10161–10172 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Combating complement’s deleterious results on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv. Mater. 34, e2107070 (2022).

    Article 

    Google Scholar
     

  • Souza, D. G., Esser, D., Bradford, R., Vieira, A. T. & Teixeira, M. M. APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory responses that comply with intestinal ischaemia and reperfusion harm. Br. J. Pharmacol. 145, 1027–1034 (2005).

    Article 
    CAS 

    Google Scholar
     

  • White, J. et al. Organic exercise, membrane-targeting modification, and crystallization of soluble human decay accelerating issue expressed in E. coli. Protein Sci. 13, 2406–2415 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bechtler, C. et al. Complement-regulatory biomaterial coatings: exercise and selectivity profile of the issue H-binding peptide 5C6. Acta Biomater. 155, 123–138 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hare, J. I. et al. Challenges and techniques in anti-cancer nanomedicine growth: an business perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Benamu, E. & Montoya, J. G. Infections related to the usage of eculizumab: suggestions for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29, 319–329 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Barnum, S. R. Therapeutic inhibition of complement: nicely definitely worth the threat. Pattern Pharmacol. Sci. 38, 503–505 (2017).

    Article 
    CAS 

    Google Scholar
     

  • van den Elsen, J. M. & Isenman, D. E. A crystal construction of the advanced between human complement receptor 2 and its ligand C3d. Science 332, 608–611 (2011).

    Article 

    Google Scholar
     

  • Farries, T. C., Seya, T., Harrison, R. A. & Atkinson, J. P. Competitors for binding websites on C3b by CR1, CR2, MCP, issue B and issue H. Complement Inflamm. 7, 30–41 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Holers, M. et al. The human complement receptor kind 2 (CR2)/CR1 fusion protein TT32, a focused inhibitor of the classical and different pathway C3 convertases, prevents arthritis in lively immunization and passive switch fashions and acts by CR2-dependent focusing on of CR1 regulatory exercise. Immunobiology 217, 1210–1210 (2012).

    Article 

    Google Scholar
     

  • Holers, V. M., Rohrer, B. & Tomlinson, S. CR2-mediated focusing on of complement inhibitors: bench-to-bedside utilizing a novel technique for site-specific complement modulation. Adv. Exp. Med. Biol. 735, 137–154 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. X., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A novel focused inhibitor of the choice pathway of complement and its therapeutic software in ischemia/reperfusion harm. J. Immunol. 181, 8068–8076 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Risitano, A. M. et al. The complement receptor 2/issue H fusion protein TT30 protects paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and C3 fragment. Blood 119, 6307–6316 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Tomlinson, S. & Thurman, J. M. Tissue-targeted complement therapeutics. Mol. Immunol. 102, 120–128 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Risitano, A. M. et al. Security and pharmacokinetics of the complement inhibitor TT30 in a section I trial for untreated PNH sufferers. Blood 126, 2137 (2015).

    Article 

    Google Scholar
     

  • Fridkis-Hareli, M. et al. The human complement receptor kind 2 (CR2)/CR1 fusion protein TT32, a novel focused inhibitor of the classical and different pathway C3 convertases, prevents arthritis in lively immunization and passive switch mouse fashions. Mol. Immunol. 105, 150–164 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Music, H., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A complement C3 inhibitor particularly focused to websites of complement activation successfully ameliorates collagen-induced arthritis in DBA/1J mice. J. Immunol. 179, 7860–7867 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. U. et al. Mouse complement regulatory protein Crry/p65 makes use of the precise mechanisms of each human decay-accelerating issue and membrane cofactor protein. J. Exp. Med. 181, 151–159 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Benasutti, H. et al. Variability of complement response towards preclinical and scientific nanocarriers within the common inhabitants. Bioconjugate Chem. 28, 2747–2755 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Berger, N. et al. New analogs of the complement C3 inhibitor compstatin with elevated solubility and improved pharmacokinetic profile. J. Med. Chem. 61, 6153–6162 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lamers, C. et al. Perception into mode-of-action and structural determinants of the compstatin household of scientific complement inhibitors. Nat. Commun. 13, 5519 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guthridge, J. M. et al. Epitope mapping utilizing the X-ray crystallographic construction of complement receptor kind 2 (CR2)/CD21: identification of a extremely inhibitory monoclonal antibody that instantly acknowledges the CR2-C3d interface. J. Immunol. 167, 5758–5766 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Chen, F. et al. Complement proteins bind to nanoparticle protein corona and endure dynamic change in vivo. Nat. Nanotechnol. 12, 387–393 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Venkatesh, Y. P., Minich, T. M., Legislation, S. Okay. & Levine, R. P. Pure launch of covalently sure C3b from cell surfaces and the examine of this phenomenon within the fluid-phase system. J. Immunol. 132, 1435–1439 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Complement opsonization of nanoparticles: variations between people and preclinical species. J. Management. Launch 338, 548–556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hardy, M. P., Rowe, T. & Wymann, S. Soluble complement receptor 1 therapeutics. J. Immunol. Sci. 6, 1–17 (2022).

    Article 

    Google Scholar
     

  • Voorhees, A. B., Baker, H. J. & Pulaski, E. J. Reactions of albino rats to injections of dextran. Proc. Soc. Exp. Biol. Med. 76, 254–256 (1951).

    Article 
    CAS 

    Google Scholar
     

  • Dezsi, L. et al. Complement activation-related pathophysiological adjustments in anesthetized rats: activator-dependent variations of signs and mediators of pseudoallergy. Molecules 24, 3283 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Timotius, I. Okay. et al. Mixture of outlined catwalk gait parameters for predictive locomotion restoration in experimental spinal wire harm rat fashions. eNeuro 8, 0497-20.2021 (2021).

  • Chen, E. et al. Untimely drug launch from polyethylene glycol (PEG)-coated liposomal doxorubicin through formation of the membrane assault advanced. ACS Nano 14, 7808–7822 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Munter, R. et al. Unravelling heterogeneities in complement and antibody opsonization of particular person liposomes as a operate of floor structure. Small 18, e2106529 (2022).

    Article 

    Google Scholar
     

  • Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization effectivity of preclinical and scientific nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. In vitro and in vivo variations in murine third complement element (C3) opsonization and macrophage/leukocyte responses to antibody-functionalized iron oxide nanoworms. Entrance. Immunol. 8, 151 (2017).


    Google Scholar
     

  • Wang, G. et al. Activation of human complement system by dextran-coated iron oxide nanoparticles shouldn’t be affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking. Entrance. Immunol. 7, 418 (2016).

    Article 

    Google Scholar
     

  • Moghimi, S. M. & Simberg, D. Crucial points and pitfalls in serum and plasma dealing with for complement evaluation in nanomedicine and bionanotechnology. Nano At the moment 44, 101479 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, L.-P. et al. Dendrimer end-terminal motif-dependent evasion of human complement and complement activation by way of IgM hitchhiking. Nat. Commun. 12, 4858 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. Excessive-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8, 12437–12449 (2014).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments