Friday, December 16, 2022
HomeNanotechnologyIn vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of a...

In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of a number of stress signalling molecules in crops


  • Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Koornneef, A. & Pieterse, C. M. Cross speak in protection signaling. Plant Physiol. 146, 839–844 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., Van & Wees, S. C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Lim, G. H. et al. The plant cuticle regulates apoplastic transport of salicylic acid throughout systemic acquired resistance. Sci. Adv. 6, eaaz0478 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chivasa, S. et al. Extracellular ATP is a regulator of pathogen defence in crops. Plant J. 60, 436–448 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Music, C. J., Steinebrunner, I., Wang, X., Stout, S. C. & Roux, S. J. Extracellular ATP induces the buildup of superoxide through NADPH oxidases in Arabidopsis. Plant Physiol. 140, 1222–1232 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Pedras, M. S., Okanga, F. I., Zaharia, I. L. & Khan, A. Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53, 161–176 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kocsy, G., Galiba, G. & Brunold, C. Position of glutathione in adaptation and signalling throughout chilling and chilly acclimation in crops. Physiol. Plant. 113, 158–164 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Noctor, G. et al. Glutathione in crops: an built-in overview. Plant Cell Environ. 35, 454–484 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J.-Ok. Abiotic stress signaling and responses in crops. Cell 167, 313–324 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant protection signaling. Science 361, 1112–1115 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berens, M. L. et al. Balancing trade-offs between biotic and abiotic stress responses by way of leaf age-dependent variation in stress hormone cross-talk. Proc. Natl Acad. Sci. USA 116, 2364–2373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lew, T. T. S. et al. Species-independent analytical instruments for next-generation agriculture. Nat. Crops 6, 1408–1417 (2020).

    Article 

    Google Scholar
     

  • Wu, H. et al. Monitoring plant well being with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lew, T. T. S., Park, M., Cui, J. & Strano, M. S. Plant nanobionic sensors for arsenic detection. Adv. Mater. 33, 2005683 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ang, M. C.-Y. et al. Nanosensor detection of artificial auxins in planta utilizing corona part molecular recognition. ACS Sens. 6, 3032–3046 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lew, T. T. S. et al. Actual-time detection of wound-induced H2O2 signalling waves in crops with optical nanosensors. Nat. Crops 6, 404–415 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Logan, N. et al. Handheld SERS coupled with QuEChERs for the delicate evaluation of a number of pesticides in basmati rice. npj Sci. Meals 6, 3 (2022).

    Article 

    Google Scholar
     

  • Han, D., Yao, J., Quan, Y., Gao, M. & Yang, J. Plasmon-coupled cost switch in FSZA core-shell microspheres with excessive SERS exercise and pesticide detection. Sci. Rep. 9, 13876 (2019).

    Article 

    Google Scholar
     

  • Wang, T. et al. Rising core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem. Eng. J. 424, 130323 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. Simultaneous SERS detection of unlawful meals components rhodamine B and primary orange II based mostly on Au nanorod-incorporated melamine foam. Meals Chem. 357, 129741 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. M., Roy, P. Ok., Juluri, B. Ok. & Chattopadhyay, S. A. SERS tattoo for in situ, ex situ, and multiplexed detection of poisonous meals components. Sens. Actuators B 261, 218–225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hassan, M. M., Zareef, M., Xu, Y., Li, H. & Chen, Q. SERS based mostly sensor for mycotoxins detection: challenges and enhancements. Meals Chem. 344, 128652 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Yan, H., Tan, X., Lu, Z. & Han, H. Cauliflower-inspired 3D SERS substrate for a number of mycotoxins detection. Anal. Chem. 91, 3885–3892 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Feasibility examine for detection of turnip yellow mosaic virus (TYMV) an infection of Chinese language cabbage crops utilizing Raman spectroscopy. Plant Pathol. J. 29, 105–109 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y.-J., Lin, H.-Ok. & Lin, Y.-H. Building of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 15, e0230330 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal. Bioanal. Chem. 414, 2757–2766 (2022).

    Article 
    CAS 

    Google Scholar
     

  • David, M., Serban, A., Radulescu, C., Danet, A. F. & Florescu, M. Bioelectrochemical analysis of plant extracts and gold nanozyme-based sensors for whole antioxidant capability dedication. Bioelectrochemistry 129, 124–134 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Moveable Raman leaf-clip sensor for speedy detection of plant stress. Sci. Rep. 10, 20206 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, C. H. et al. Early analysis and administration of nitrogen deficiency in crops using Raman spectroscopy. Entrance. Plant Sci. 11, 663 (2020).

    Article 

    Google Scholar
     

  • Altangerel, N. et al. In vivo diagnostics of early abiotic plant stress response through Raman spectroscopy. Proc. Natl Acad. Sci. USA 114, 3393–3396 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H., Wang, Y. & Dong, S. An efficient hydrothermal route for the synthesis of a number of PDDA-protected noble-metal nanostructures. Inorg. Chem. 46, 10587–10593 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Vaia, R. A. & Giannelis, E. P. Polymer soften intercalation in organically-modified layered silicates: mannequin predictions and experiment. Macromolecules 30, 8000–8009 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, Ok., Gilroy, S., Jones, A. M. & Stacey, G. Extracellular ATP signaling in crops. Developments Cell Biol. 20, 601–608 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. Y., Sivaguru, M. & Stacey, G. Extracellular ATP in crops. Visualization, localization, and evaluation of physiological significance in development and signaling. Plant Physiol. 142, 984–992 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lv, W. et al. Multi-hydrogen bond assisted SERS detection of adenine based mostly on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 204, 372–378 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dutta, J., Sahu, A. Ok., Bhadauria, A. S. & Biswal, H. S. Carbon-centered hydrogen bonds in proteins. J. Chem. Inf. Mannequin. 62, 1998–2008 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Copeland, Ok. L. & Tschumper, G. S. Hydrocarbon/water interactions: encouraging energetics and buildings from DFT however disconcerting discrepancies for Hessian indices. J. Chem. Idea Comput. 8, 1646–1656 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Darkish, A., Demidchik, V., Richards, S. L., Shabala, S. & Davies, J. M. Launch of extracellular purines from plant roots and impact on ion fluxes. Plant Sign. Behav. 6, 1855–1857 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tálas, E. et al. Floor enhanced Raman spectroscopic (SERS) conduct of phenylpyruvates utilized in heterogeneous catalytic uneven cascade response. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119912 (2021).

    Article 

    Google Scholar
     

  • Lew, T. T. S. et al. Rational design rules for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).

    Article 

    Google Scholar
     

  • Kwak, S.-Y. et al. A nanobionic light-emitting plant. Nano Lett. 17, 7951–7961 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Teale, W. D., Paponov, I. A. & Palme, Ok. Auxin in motion: signalling, transport and the management of plant development and growth. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wittek, F. et al. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mol. Plant Pathol. 16, 616–622 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T. T., Kuo, C. S., Chou, Y. C. & Liang, N. T. Floor-enhanced Raman scattering of adenosine triphosphate molecules. Langmuir 5, 887–891 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Chadha, R., Das, A., Kapoor, S. & Maiti, N. Floor-induced dimerization of 2-thiazoline-2-thiol on silver and gold nanoparticles: a floor enhanced Raman scattering (SERS) and density useful theoretical (DFT) examine. J. Mol. Liq. 322, 114536 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pedras, M. S. C. & To, Q. H. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds. Org. Biomol. Chem. 16, 3625–3638 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Herschbach, C. & Rennenberg, H. Affect of glutathione (GSH) on internet uptake of sulphate and sulphate transport in tobacco crops. J. Exp. Bot. 45, 1069–1076 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Vanacker, H., Carver, T. L. & Lobby, C. H. Pathogen-induced adjustments within the antioxidant standing of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kuligowski, J. et al. Floor enhanced Raman spectroscopic direct dedication of low molecular weight biothiols in umbilical twine complete blood. Analyst 141, 2165–2174 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Q. et al. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Mol. Plant Pathol. 19, 1995–2010 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, R. S. & Kistler, H. C. Heading for catastrophe: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Feng, H. et al. Extracellular ATP is concerned within the salicylic acid-induced cell demise in suspension-cultured tobacco cells. Plant Prod. Sci. 18, 154–160 (2015).

    Article 

    Google Scholar
     

  • Lefevere, H., Bauters, L. & Gheysen, G. Salicylic acid biosynthesis in crops. Entrance. Plant Sci. 11, 338 (2020).

    Article 

    Google Scholar
     

  • Ding, L. et al. Resistance to hemi-biotrophic F. graminearum an infection is related to coordinated and ordered expression of various protection signaling pathways. PLoS ONE 6, e19008 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning native an infection into international protection. Annu Rev. Plant Biol. 64, 839–863 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rico, A., Bennett, M. H., Forcat, S., Huang, W. E. & Preston, G. M. Agroinfiltration reduces ABA ranges and suppresses Pseudomonas syringae-elicited salicylic acid manufacturing in Nicotiana tabacum. PLoS ONE 5, e8977 (2010).

    Article 

    Google Scholar
     

  • Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R. & Somerville, S. C. Phytoalexin accumulation in Arabidopsis thaliana throughout the allergic reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98, 1304–1309 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Cha, M. G. et al. Impact of alkylamines on morphology management of silver nanoshells for extremely enhanced Raman scattering. ACS Appl. Mater. Interfaces 11, 8374–8381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leslie, J. F. & Summerell, B. A. Fusarium laboratory workshops—a current historical past. Mycotoxin Res. 22, 73–74 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Sarowar, S. et al. Focusing on the pattern-triggered immunity pathway to boost resistance to Fusarium graminearum. Mol. Plant Pathol. 20, 626–640 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, S. C. et al. The final word qPCR experiment: producing publication high quality, reproducible information the primary time. Developments Biotechnol. 37, 761–774 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, J. et al. WRKY transcription components related to NPR1-mediated acquired resistance in barley are potential sources to enhance wheat resistance to Puccinia triticina. Entrance. Plant Sci. 9, 1486 (2018).

    Article 

    Google Scholar
     

  • Manghwar, H. et al. Illness severity, resistance evaluation, and expression profiling of pathogenesis-related protein genes after the inoculation of Fusarium equiseti in wheat. Agronomy 11, 2124 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments