Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).
Koornneef, A. & Pieterse, C. M. Cross speak in protection signaling. Plant Physiol. 146, 839–844 (2008).
Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., Van & Wees, S. C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009).
Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756 (1993).
Lim, G. H. et al. The plant cuticle regulates apoplastic transport of salicylic acid throughout systemic acquired resistance. Sci. Adv. 6, eaaz0478 (2020).
Chivasa, S. et al. Extracellular ATP is a regulator of pathogen defence in crops. Plant J. 60, 436–448 (2009).
Music, C. J., Steinebrunner, I., Wang, X., Stout, S. C. & Roux, S. J. Extracellular ATP induces the buildup of superoxide through NADPH oxidases in Arabidopsis. Plant Physiol. 140, 1222–1232 (2006).
Pedras, M. S., Okanga, F. I., Zaharia, I. L. & Khan, A. Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53, 161–176 (2000).
Kocsy, G., Galiba, G. & Brunold, C. Position of glutathione in adaptation and signalling throughout chilling and chilly acclimation in crops. Physiol. Plant. 113, 158–164 (2001).
Noctor, G. et al. Glutathione in crops: an built-in overview. Plant Cell Environ. 35, 454–484 (2012).
Zhu, J.-Ok. Abiotic stress signaling and responses in crops. Cell 167, 313–324 (2016).
Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant protection signaling. Science 361, 1112–1115 (2018).
Berens, M. L. et al. Balancing trade-offs between biotic and abiotic stress responses by way of leaf age-dependent variation in stress hormone cross-talk. Proc. Natl Acad. Sci. USA 116, 2364–2373 (2019).
Lew, T. T. S. et al. Species-independent analytical instruments for next-generation agriculture. Nat. Crops 6, 1408–1417 (2020).
Wu, H. et al. Monitoring plant well being with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).
Lew, T. T. S., Park, M., Cui, J. & Strano, M. S. Plant nanobionic sensors for arsenic detection. Adv. Mater. 33, 2005683 (2021).
Ang, M. C.-Y. et al. Nanosensor detection of artificial auxins in planta utilizing corona part molecular recognition. ACS Sens. 6, 3032–3046 (2021).
Lew, T. T. S. et al. Actual-time detection of wound-induced H2O2 signalling waves in crops with optical nanosensors. Nat. Crops 6, 404–415 (2020).
Logan, N. et al. Handheld SERS coupled with QuEChERs for the delicate evaluation of a number of pesticides in basmati rice. npj Sci. Meals 6, 3 (2022).
Han, D., Yao, J., Quan, Y., Gao, M. & Yang, J. Plasmon-coupled cost switch in FSZA core-shell microspheres with excessive SERS exercise and pesticide detection. Sci. Rep. 9, 13876 (2019).
Wang, T. et al. Rising core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem. Eng. J. 424, 130323 (2021).
Solar, Y. et al. Simultaneous SERS detection of unlawful meals components rhodamine B and primary orange II based mostly on Au nanorod-incorporated melamine foam. Meals Chem. 357, 129741 (2021).
Wang, C. M., Roy, P. Ok., Juluri, B. Ok. & Chattopadhyay, S. A. SERS tattoo for in situ, ex situ, and multiplexed detection of poisonous meals components. Sens. Actuators B 261, 218–225 (2018).
Hassan, M. M., Zareef, M., Xu, Y., Li, H. & Chen, Q. SERS based mostly sensor for mycotoxins detection: challenges and enhancements. Meals Chem. 344, 128652 (2021).
Li, J., Yan, H., Tan, X., Lu, Z. & Han, H. Cauliflower-inspired 3D SERS substrate for a number of mycotoxins detection. Anal. Chem. 91, 3885–3892 (2019).
Kim, S. et al. Feasibility examine for detection of turnip yellow mosaic virus (TYMV) an infection of Chinese language cabbage crops utilizing Raman spectroscopy. Plant Pathol. J. 29, 105–109 (2013).
Lin, Y.-J., Lin, H.-Ok. & Lin, Y.-H. Building of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 15, e0230330 (2020).
Zhang, Y. et al. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal. Bioanal. Chem. 414, 2757–2766 (2022).
David, M., Serban, A., Radulescu, C., Danet, A. F. & Florescu, M. Bioelectrochemical analysis of plant extracts and gold nanozyme-based sensors for whole antioxidant capability dedication. Bioelectrochemistry 129, 124–134 (2019).
Gupta, S. et al. Moveable Raman leaf-clip sensor for speedy detection of plant stress. Sci. Rep. 10, 20206 (2020).
Huang, C. H. et al. Early analysis and administration of nitrogen deficiency in crops using Raman spectroscopy. Entrance. Plant Sci. 11, 663 (2020).
Altangerel, N. et al. In vivo diagnostics of early abiotic plant stress response through Raman spectroscopy. Proc. Natl Acad. Sci. USA 114, 3393–3396 (2017).
Chen, H., Wang, Y. & Dong, S. An efficient hydrothermal route for the synthesis of a number of PDDA-protected noble-metal nanostructures. Inorg. Chem. 46, 10587–10593 (2007).
Vaia, R. A. & Giannelis, E. P. Polymer soften intercalation in organically-modified layered silicates: mannequin predictions and experiment. Macromolecules 30, 8000–8009 (1997).
Tanaka, Ok., Gilroy, S., Jones, A. M. & Stacey, G. Extracellular ATP signaling in crops. Developments Cell Biol. 20, 601–608 (2010).
Kim, S. Y., Sivaguru, M. & Stacey, G. Extracellular ATP in crops. Visualization, localization, and evaluation of physiological significance in development and signaling. Plant Physiol. 142, 984–992 (2006).
Lv, W. et al. Multi-hydrogen bond assisted SERS detection of adenine based mostly on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 204, 372–378 (2019).
Dutta, J., Sahu, A. Ok., Bhadauria, A. S. & Biswal, H. S. Carbon-centered hydrogen bonds in proteins. J. Chem. Inf. Mannequin. 62, 1998–2008 (2022).
Copeland, Ok. L. & Tschumper, G. S. Hydrocarbon/water interactions: encouraging energetics and buildings from DFT however disconcerting discrepancies for Hessian indices. J. Chem. Idea Comput. 8, 1646–1656 (2012).
Darkish, A., Demidchik, V., Richards, S. L., Shabala, S. & Davies, J. M. Launch of extracellular purines from plant roots and impact on ion fluxes. Plant Sign. Behav. 6, 1855–1857 (2011).
Tálas, E. et al. Floor enhanced Raman spectroscopic (SERS) conduct of phenylpyruvates utilized in heterogeneous catalytic uneven cascade response. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119912 (2021).
Lew, T. T. S. et al. Rational design rules for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).
Kwak, S.-Y. et al. A nanobionic light-emitting plant. Nano Lett. 17, 7951–7961 (2017).
Teale, W. D., Paponov, I. A. & Palme, Ok. Auxin in motion: signalling, transport and the management of plant development and growth. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).
Wittek, F. et al. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mol. Plant Pathol. 16, 616–622 (2015).
Chen, T. T., Kuo, C. S., Chou, Y. C. & Liang, N. T. Floor-enhanced Raman scattering of adenosine triphosphate molecules. Langmuir 5, 887–891 (1989).
Chadha, R., Das, A., Kapoor, S. & Maiti, N. Floor-induced dimerization of 2-thiazoline-2-thiol on silver and gold nanoparticles: a floor enhanced Raman scattering (SERS) and density useful theoretical (DFT) examine. J. Mol. Liq. 322, 114536 (2021).
Pedras, M. S. C. & To, Q. H. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds. Org. Biomol. Chem. 16, 3625–3638 (2018).
Herschbach, C. & Rennenberg, H. Affect of glutathione (GSH) on internet uptake of sulphate and sulphate transport in tobacco crops. J. Exp. Bot. 45, 1069–1076 (1994).
Vanacker, H., Carver, T. L. & Lobby, C. H. Pathogen-induced adjustments within the antioxidant standing of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114 (1998).
Kuligowski, J. et al. Floor enhanced Raman spectroscopic direct dedication of low molecular weight biothiols in umbilical twine complete blood. Analyst 141, 2165–2174 (2016).
Hao, Q. et al. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Mol. Plant Pathol. 19, 1995–2010 (2018).
Goswami, R. S. & Kistler, H. C. Heading for catastrophe: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525 (2004).
Feng, H. et al. Extracellular ATP is concerned within the salicylic acid-induced cell demise in suspension-cultured tobacco cells. Plant Prod. Sci. 18, 154–160 (2015).
Lefevere, H., Bauters, L. & Gheysen, G. Salicylic acid biosynthesis in crops. Entrance. Plant Sci. 11, 338 (2020).
Ding, L. et al. Resistance to hemi-biotrophic F. graminearum an infection is related to coordinated and ordered expression of various protection signaling pathways. PLoS ONE 6, e19008 (2011).
Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning native an infection into international protection. Annu Rev. Plant Biol. 64, 839–863 (2013).
Rico, A., Bennett, M. H., Forcat, S., Huang, W. E. & Preston, G. M. Agroinfiltration reduces ABA ranges and suppresses Pseudomonas syringae-elicited salicylic acid manufacturing in Nicotiana tabacum. PLoS ONE 5, e8977 (2010).
Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R. & Somerville, S. C. Phytoalexin accumulation in Arabidopsis thaliana throughout the allergic reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98, 1304–1309 (1992).
Cha, M. G. et al. Impact of alkylamines on morphology management of silver nanoshells for extremely enhanced Raman scattering. ACS Appl. Mater. Interfaces 11, 8374–8381 (2019).
Leslie, J. F. & Summerell, B. A. Fusarium laboratory workshops—a current historical past. Mycotoxin Res. 22, 73–74 (2006).
Sarowar, S. et al. Focusing on the pattern-triggered immunity pathway to boost resistance to Fusarium graminearum. Mol. Plant Pathol. 20, 626–640 (2019).
Taylor, S. C. et al. The final word qPCR experiment: producing publication high quality, reproducible information the primary time. Developments Biotechnol. 37, 761–774 (2019).
Gao, J. et al. WRKY transcription components related to NPR1-mediated acquired resistance in barley are potential sources to enhance wheat resistance to Puccinia triticina. Entrance. Plant Sci. 9, 1486 (2018).
Manghwar, H. et al. Illness severity, resistance evaluation, and expression profiling of pathogenesis-related protein genes after the inoculation of Fusarium equiseti in wheat. Agronomy 11, 2124 (2021).