Goodenough, J. B. & Park, Ok. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Dunn, B., Kamath, H. & Tarascon, J. M. Electrical vitality storage for the grid: a battery of decisions. Science 334, 928–935 (2011).
Grande, L. et al. The lithium/air battery: nonetheless an rising system or a sensible actuality? Adv. Mater. 27, 784–800 (2015).
Lu, Y. Y. et al. Secure biking of lithium metallic batteries utilizing excessive transference quantity electrolytes. Adv. Vitality Mater. 5, 1402073 (2015).
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured supplies for superior vitality conversion and storage units. Nat. Mater. 4, 366–377 (2005).
Solar, Y. M., Liu, N. A. & Cui, Y. Guarantees and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Vitality 1, 16071 (2016).
Cheng, X. B. & Zhang, Q. Dendrite-free lithium metallic anodes: secure stable electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 3, 7207–7209 (2015).
Tarascon, J. M. & Armand, M. Points and challenges going through rechargeable lithium batteries. Nature 414, 359–367 (2001).
Guo, Y. P., Li, H. Q. & Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).
Yuan, S. Y. et al. Graphene-supported nitrogen and boron wealthy carbon layer for improved efficiency of lithium-sulfur batteries because of enhanced chemisorption of lithium polysulfides. Adv. Vitality Mater. 6, 1501733 (2016).
Janek, J. & Zeier, W. G. A stable future for battery growth. Nat. Vitality 1, 16141 (2016).
Luntz, A. C., Voss, J. & Reuter, Ok. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).
Cao, R. G., Xu, W., Lv, D. P., Xiao, J. & Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Vitality Mater. 5, 1402273 (2015).
He, P., Zhang, T., Jiang, J. & Zhou, H. S. Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7, 1267–1280 (2016).
Huang, C.-J. et al. Decoupling the origins of irreversible coulombic effectivity in anode-free lithium metallic batteries. Nat. Commun. 12, 1452. (2021).
Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Vitality 6, 653–662 (2021).
Xu, Ok. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).
Peled, E. The electrochemical conduct of alkali and alkaline earth metals in nonaqueous battery methods—the stable electrolyte interphase mannequin. J. Electrochem. Soc. 126, 2047 (1979).
Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: present understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).
An, S. J. et al. The state of understanding of the lithium-ion-battery graphite stable electrolyte interphase (SEI) and its relationship to formation biking. Carbon 105, 52–76 (2016).
Orsini, F. et al. In situ scanning electron microscopy (SEM) commentary of interfaces inside plastic lithium batteries. J. Energy Sources 76, 19–29 (1998).
Mehdi, B. L. et al. Statement and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).
Nie, M. Y. et al. Lithium ion battery graphite stable electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C 117, 1257–1267 (2013).
Wang, L. et al. Figuring out the parts of the stable–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019).
Ai, Q. et al. Lithium-conducting covalent-organic-frameworks as synthetic solid-electrolyte-interphase on silicon anode for prime efficiency lithium ion batteries. Nano Vitality 72, 104657 (2020).
Zeng, X. et al. Electrolyte design for in situ development of extremely Zn2+‐conductive stable electrolyte interphase to allow excessive‐efficiency aqueous Zn‐ion batteries beneath sensible situations. Adv. Mater. 33, 2007416 (2021).
Nanda, J. et al. Unraveling the nanoscale heterogeneity of stable electrolyte interphase utilizing tip-enhanced Raman spectroscopy. Joule 3, 2001–2019 (2019).
Chen, D. et al. Origin of additional capability within the stable electrolyte interphase close to high-capacity iron carbide anodes for Li ion batteries. Vitality Environ. Sci. 13, 2924–2937 (2020).
Qiu, H. et al. Zinc anode-compatible in-situ stable electrolyte interphase through cation solvation modulation. Nat. Commun. 10, 5374 (2019).
Wooden, Ok. N. et al. Operando X-ray photoelectron spectroscopy of stable electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 9, 2490 (2018).
Cheng, D. et al. Unveiling the secure nature of the stable electrolyte interphase between lithium metallic and LiPON through cryogenic electron microscopy. Joule 4, 2484–2500 (2020).
Cao, C. et al. Strong electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3, 762–781 (2019).
Zhou, Y. et al. Actual-time mass spectrometric characterization of the stable–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).
Li, Y. Z. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).
Wang, X. F. et al. New insights on the construction of electrochemically deposited lithium metallic and its stable electrolyte interphases through cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).
Wan, J. et al. Extremely-thin stable electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10, 3265 (2019).
von Cresce, A., Russell, S. M., Baker, D. R., Gaskell, Ok. J. & Xu, Ok. In situ and quantitative characterization of stable electrolyte interphases. Nano Lett. 14, 1405–1412 (2014).
Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).
Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).
Nie, M. et al. Position of resolution construction in stable electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 117, 25381–25389 (2013).
Qian, J. et al. Dendrite-free Li deposition utilizing trace-amounts of water as an electrolyte additive. Nano Vitality 15, 135–144 (2015).
Shen, C. et al. Li2O-reinforced stable electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition. Entrance. Chem. 6, 517 (2018).
Terborg, L. et al. Ion chromatographic dedication of hydrolysis merchandise of hexafluorophosphate salts in aqueous resolution. Anal. Chim. Acta 714, 121–126 (2012).
Shi, Y. et al. Electrochemical impedance imaging on conductive surfaces. Anal. Chem. 93, 12320–12328 (2021).
Foley, Ok. J., Shan, X. & Tao, N. J. Floor impedance imaging method. Anal. Chem. 80, 5146–5151 (2008).
Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. Identification of floor movies fashioned on lithium in propylene carbonate options. J. Electrochem. Soc. 134, 1611 (1987).
Xing, L. et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113, 16596–16602 (2009).
Kanamura, Ok. et al. Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 skinny movie electrode for lithium batteries. Electrochim. Acta 47, 433–439 (2001).
von Cresce, A. et al. In situ and quantitative characterization of stable electrolyte interphases. Nano Lett. 14, 1405–1412 (2014).
Aurbach, D. et al. The examine of electrolyte options primarily based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metallic anodes. J. Electrochem. Soc. 142, 2873 (1995).
Parimalam, B. S., MacIntosh, A. D., Kadam, R. & Lucht, B. L. Decomposition reactions of anode stable electrolyte interphase (SEI) parts with LiPF6. J. Phys. Chem. C 121, 22733–22738 (2017).
Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).
Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Vitality Lett. 5, 1128–1135 (2020).
Wang, X. et al. New insights on the construction of electrochemically deposited lithium metallic and its stable electrolyte interphases through cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).
Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Overview on modeling of the anode stable electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 4, 15 (2018).
Leung, Ok. & Jungjohann, Ok. J. Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces. J. Phys. Chem. C 121, 20188–20196 (2017).
Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod construction. Nano Lett. 14, 6889–6896 (2014).
Kasse, R. M. et al. Understanding additive managed lithium morphology in lithium metallic batteries. J. Mater. Chem. A 8, 16960–16972 (2020).