Monday, February 13, 2023
HomeNanotechnologyImaging stable–electrolyte interphase dynamics utilizing operando reflection interference microscopy

Imaging stable–electrolyte interphase dynamics utilizing operando reflection interference microscopy


  • Goodenough, J. B. & Park, Ok. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dunn, B., Kamath, H. & Tarascon, J. M. Electrical vitality storage for the grid: a battery of decisions. Science 334, 928–935 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Grande, L. et al. The lithium/air battery: nonetheless an rising system or a sensible actuality? Adv. Mater. 27, 784–800 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. Y. et al. Secure biking of lithium metallic batteries utilizing excessive transference quantity electrolytes. Adv. Vitality Mater. 5, 1402073 (2015).

    Article 

    Google Scholar
     

  • Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured supplies for superior vitality conversion and storage units. Nat. Mater. 4, 366–377 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. M., Liu, N. A. & Cui, Y. Guarantees and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Vitality 1, 16071 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, X. B. & Zhang, Q. Dendrite-free lithium metallic anodes: secure stable electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 3, 7207–7209 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tarascon, J. M. & Armand, M. Points and challenges going through rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Y. P., Li, H. Q. & Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).

    Article 

    Google Scholar
     

  • Yuan, S. Y. et al. Graphene-supported nitrogen and boron wealthy carbon layer for improved efficiency of lithium-sulfur batteries because of enhanced chemisorption of lithium polysulfides. Adv. Vitality Mater. 6, 1501733 (2016).

    Article 

    Google Scholar
     

  • Janek, J. & Zeier, W. G. A stable future for battery growth. Nat. Vitality 1, 16141 (2016).

    Article 

    Google Scholar
     

  • Luntz, A. C., Voss, J. & Reuter, Ok. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cao, R. G., Xu, W., Lv, D. P., Xiao, J. & Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Vitality Mater. 5, 1402273 (2015).

    Article 

    Google Scholar
     

  • He, P., Zhang, T., Jiang, J. & Zhou, H. S. Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7, 1267–1280 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, C.-J. et al. Decoupling the origins of irreversible coulombic effectivity in anode-free lithium metallic batteries. Nat. Commun. 12, 1452. (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Vitality 6, 653–662 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Ok. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Peled, E. The electrochemical conduct of alkali and alkaline earth metals in nonaqueous battery methods—the stable electrolyte interphase mannequin. J. Electrochem. Soc. 126, 2047 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: present understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article 
    CAS 

    Google Scholar
     

  • An, S. J. et al. The state of understanding of the lithium-ion-battery graphite stable electrolyte interphase (SEI) and its relationship to formation biking. Carbon 105, 52–76 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Orsini, F. et al. In situ scanning electron microscopy (SEM) commentary of interfaces inside plastic lithium batteries. J. Energy Sources 76, 19–29 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mehdi, B. L. et al. Statement and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nie, M. Y. et al. Lithium ion battery graphite stable electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C 117, 1257–1267 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Figuring out the parts of the stable–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ai, Q. et al. Lithium-conducting covalent-organic-frameworks as synthetic solid-electrolyte-interphase on silicon anode for prime efficiency lithium ion batteries. Nano Vitality 72, 104657 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, X. et al. Electrolyte design for in situ development of extremely Zn2+‐conductive stable electrolyte interphase to allow excessive‐efficiency aqueous Zn‐ion batteries beneath sensible situations. Adv. Mater. 33, 2007416 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nanda, J. et al. Unraveling the nanoscale heterogeneity of stable electrolyte interphase utilizing tip-enhanced Raman spectroscopy. Joule 3, 2001–2019 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Origin of additional capability within the stable electrolyte interphase close to high-capacity iron carbide anodes for Li ion batteries. Vitality Environ. Sci. 13, 2924–2937 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, H. et al. Zinc anode-compatible in-situ stable electrolyte interphase through cation solvation modulation. Nat. Commun. 10, 5374 (2019).

    Article 

    Google Scholar
     

  • Wooden, Ok. N. et al. Operando X-ray photoelectron spectroscopy of stable electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 9, 2490 (2018).

    Article 

    Google Scholar
     

  • Cheng, D. et al. Unveiling the secure nature of the stable electrolyte interphase between lithium metallic and LiPON through cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cao, C. et al. Strong electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3, 762–781 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Actual-time mass spectrometric characterization of the stable–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. Z. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. F. et al. New insights on the construction of electrochemically deposited lithium metallic and its stable electrolyte interphases through cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wan, J. et al. Extremely-thin stable electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10, 3265 (2019).

    Article 

    Google Scholar
     

  • von Cresce, A., Russell, S. M., Baker, D. R., Gaskell, Ok. J. & Xu, Ok. In situ and quantitative characterization of stable electrolyte interphases. Nano Lett. 14, 1405–1412 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nie, M. et al. Position of resolution construction in stable electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 117, 25381–25389 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qian, J. et al. Dendrite-free Li deposition utilizing trace-amounts of water as an electrolyte additive. Nano Vitality 15, 135–144 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shen, C. et al. Li2O-reinforced stable electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition. Entrance. Chem. 6, 517 (2018).

  • Terborg, L. et al. Ion chromatographic dedication of hydrolysis merchandise of hexafluorophosphate salts in aqueous resolution. Anal. Chim. Acta 714, 121–126 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Electrochemical impedance imaging on conductive surfaces. Anal. Chem. 93, 12320–12328 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Foley, Ok. J., Shan, X. & Tao, N. J. Floor impedance imaging method. Anal. Chem. 80, 5146–5151 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. Identification of floor movies fashioned on lithium in propylene carbonate options. J. Electrochem. Soc. 134, 1611 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Xing, L. et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113, 16596–16602 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kanamura, Ok. et al. Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 skinny movie electrode for lithium batteries. Electrochim. Acta 47, 433–439 (2001).

    Article 
    CAS 

    Google Scholar
     

  • von Cresce, A. et al. In situ and quantitative characterization of stable electrolyte interphases. Nano Lett. 14, 1405–1412 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Aurbach, D. et al. The examine of electrolyte options primarily based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metallic anodes. J. Electrochem. Soc. 142, 2873 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Parimalam, B. S., MacIntosh, A. D., Kadam, R. & Lucht, B. L. Decomposition reactions of anode stable electrolyte interphase (SEI) parts with LiPF6. J. Phys. Chem. C 121, 22733–22738 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

  • Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Vitality Lett. 5, 1128–1135 (2020).

  • Wang, X. et al. New insights on the construction of electrochemically deposited lithium metallic and its stable electrolyte interphases through cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

  • Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Overview on modeling of the anode stable electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 4, 15 (2018).

  • Leung, Ok. & Jungjohann, Ok. J. Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces. J. Phys. Chem. C 121, 20188–20196 (2017).

  • Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod construction. Nano Lett. 14, 6889–6896 (2014).

  • Kasse, R. M. et al. Understanding additive managed lithium morphology in lithium metallic batteries. J. Mater. Chem. A 8, 16960–16972 (2020).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments