Bogue, R. In direction of the trillion sensors market. Sensor Rev. 34, 137–142 (2014).
Alam, M., Tehranipoor, M. M. & Guin, U. TSensors imaginative and prescient, infrastructure and safety challenges in trillion sensor period. J. Hardw. Syst. Secur. 1, 311–327 (2017).
Culshaw, B. Optical fiber sensor applied sciences: alternatives and—maybe—pitfalls. J. Mild. Technol. 22, 39–50 (2004).
Komma, J., Schwarz, C., Hofmann, G., Heinert, D. & Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101, 041905 (2012).
Courts, S. S. & Swinehart, P. R. Assessment of CernoxTM (zirconium oxy-nitride) thin-film resistance temperature sensors. AIP Conf. Proc. 684, 393–398 (2003).
Reverter, F. A tutorial on thermal sensors within the two hundredth anniversary of the Seebeck impact. IEEE Sens. J. 21, 22122–22132 (2021).
Matsuura, M. Latest development in power-over-fiber applied sciences. Photonics 8, 335 (2021).
Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting gadgets. Nat. Electron. 4, 326–332 (2021).
Loader, B., Alexander, M. & Osawa, R. Improvement of optical electrical subject sensors for EMC measurement. In 2014 Worldwide Symposium on Electromagnetic Compatibility, Tokyo 658–661 (IEEE, 2014).
Calero, V. et al. An extremely wideband-high spatial resolution-compact electrical subject sensor based mostly on lab-on-fiber expertise. Sci. Rep. 9, 8058 (2019).
Peng, J. et al. Latest progress on electromagnetic subject measurement based mostly on optical sensors. Sensors 19, 2860 (2019).
Zhao, C., Cai, L. & Zhao, Y. An optical fiber electrical subject sensor based mostly on polarization-maintaining photonic crystal fiber selectively stuffed with liquid crystal. Microelectron. Eng. 250, 111639 (2021).
Iannuzzi, D. et al. Monolithic fiber-top sensor for essential environments and normal purposes. Appl. Phys. Lett. 88, 053501 (2006).
Park, B. et al. Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26, 900–903 (2014).
Vaiano, P. et al. Lab on fiber expertise for organic sensing purposes. Laser Photon. Rev. 10, 922–961 (2016).
Pevec, S. & Donlagić, D. Multiparameter fiber-optic sensors: a overview. Decide. Eng. 58, 072009 (2019).
Picelli, L. et al. Scalable wafer-to-fiber switch technique for lab-on-fiber sensing. Appl. Phys. Lett. 117, 151101 (2020).
Suzuki, N. & Tada, Okay. Electrooptic properties and Raman scattering in InP. Jpn. J. Appl. Phys. 23, 291–295 (1984).
Bennett, B. R., Soref, R. A. & del Alamo, J. A. Provider-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).
Sze, S. M. & Ng, Okay. Okay. Physics of Semiconductor Units (John Wiley & Sons, 2007).
Meiners, L. G. Temperature dependence of the dielectric fixed of InP. J. Appl. Phys. 59, 1611–1613 (1986).
Lebedev, M. V. et al. InP(1 0 0) floor passivation with aqueous sodium sulfide resolution. Appl. Surf. Sci. 533, 147484 (2020).
Jalil, J., Zhu, Y., Ekanayake, C. & Ruan, Y. Sensing of single electrons utilizing micro and nano applied sciences: a overview. Nanotechnology 28, 142002 (2017).
Shwarts, Y. M. et al. Silicon diode temperature sensor and not using a kink of the response curve in cryogenic temperature area. Sens. Actuator. A Phys. 76, 107–111 (1999).
Courts, S. One yr stability of CernoxTM and DT-670-SD silicon diode cryogenic temperature sensors operated at 77 Okay. Cryogenics 107, 103050 (2020).
Cohen, B. G., Snow, W. B. & Tretola, A. R. GaAs p-n junction diodes for wide selection thermometry. Rev. Sci. Instrum. 34, 1091–1093 (1963).
de Miguel-Soto, V. et al. Examine of optical fiber sensors for cryogenic temperature measurements. Sensors 17, 2773 (2017).
Smartec. Cryogenic Sensing—Software Notice https://smartec.ch/wp-content/uploads/2017/12/E-APN_CRYO_01-SMARTECV2.pdf (2017).
McCammon, D. Semiconductor thermistors. In Cryogenic Particle Detection (ed. Enss, C.) 35–62 (Springer, 2005).
Qiu, W., Ndao, A., Lu, H., Bernal, M.-P. & Baida, F. I. Guided resonances on lithium niobate for terribly small electrical subject detection investigated by correct sensitivity evaluation. Decide. Specific 24, 20196–20209 (2016).