Stamu-O’Brien C, Jafferany M, Carniciu S, Abdelmaksoud A. Psychodermatology of zits: psychological facets and results of zits vulgaris. J Cosmet Dermatol. 2021;20(4):1080–3.
Melnik BC, Schmitz G. Function of insulin, insulin-like development factor-1, hyperglycaemic meals and milk consumption within the pathogenesis of zits vulgaris. Exp Dermatol. 2009;18(10):833–41.
Yang Z, Chang YJ, Yu IC, Yeh S, Wu CC, Miyamoto H, et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype through degradation of androgen receptor. Nature Med. 2007;13(3):348–53.
Ma L, Xiang LH, Yu B, Yin R, Chen L, Wu Y, et al. Low-dose topical 5-aminolevulinic acid photodynamic remedy within the therapy of various severity of zits vulgaris. Photodiagnosis Photodyn Ther. 2013;10(4):583–90.
Baldwin H, Webster G, Stein Gold L, Callender V, Cook dinner-Bolden FE, Guenin E. 50 Years of topical retinoids for zits: evolution of therapy. Am J Clin Dermatol. 2021;22(3):315–27.
Stuart B, Maund E, Wilcox C, Sridharan Okay, Sivaramakrishnan G, Regas C, et al. Topical preparations for the therapy of mild-to-moderate zits vulgaris: systematic assessment and community meta-analysis. Br J Dermatol. 2021;185(3):512–25.
Yoham AL, Casadesus D. Tretinoin. Treasure Island (FL): StatPearls; 2021.
Furukawa F, Makino T, Mori S, Shimizu T. Profitable therapy of zits fulminans with the mixture of prednisolone and diaminodiphenylsulfone. J Dermatol. 2021;48(2):e120–1.
George R, Clarke S, Thiboutot D. Hormonal remedy for zits. Semin Cutan Med Surg. 2008;27(3):188–96.
Thiboutot D, Gollnick H, Bettoli V, Dreno B, Kang S, Leyden JJ, et al. New insights into the administration of zits: an replace from the worldwide alliance to enhance outcomes in zits group. J Am Acad Dermatol. 2009;60(5):50.
Zaenglein AL. Pimples vulgaris. N Engl J Med. 2018;379(14):1343–52.
Katoh M. FGFR2 abnormalities underlie a spectrum of bone, pores and skin, and most cancers pathologies. J Make investments Dermatol. 2009;129(8):1861–7.
Luo Y, Ye S, Kan M, McKeehan WL. Management of fibroblast development issue (FGF) 7-and FGF1-induced mitogenesis and downstream signalling by distinct heparin octasaccharide motifs. J Biol Chem. 2006;281(30):21052–61.
Munro CS, Wilkie AO. Epidermal mosaicism producing localised zits: somatic mutation in FGFR2. Lancet. 1998;352(9129):704–5.
Rees J. FGFR2 mutations and zits. Lancet. 1998;352(9129):668–9.
Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast development issue receptor 2 exhibit elevated affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.
Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, et al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and a rise in epithelial androgen receptor. Most cancers Cell. 2007;12(6):572–85.
Rosini P, Bonaccorsi L, Baldi E, Chiasserini C, Forti G, De Chiara G, et al. Androgen receptor expression induces FGF2, FGF-binding protein manufacturing, and FGF2 launch in prostate carcinoma cells: position of FGF2 in development, survival, and androgen receptor down-modulation. Prostate. 2002;53(4):310–21.
Wang Q, Stamp GW, Powell S, Abel P, Laniado M, Mahony C, et al. Correlation between androgen receptor expression and FGF8 mRNA ranges in sufferers with prostate most cancers and benign prostatic hypertrophy. J Clin Pathol. 1999;52(1):29–34.
Gnanapragasam VJ, Robson CN, Neal DE, Leung HY. Regulation of FGF8 expression by the androgen receptor in human prostate most cancers. Oncogene. 2002;21(33):5069–80.
Danilenko DM, Ring BD, Yanagihara D, Benson W, Wiemann B, Starnes CO, et al. Keratinocyte development issue is a crucial endogenous mediator of hair follicle development, improvement, and differentiation normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol. 1995;147(1):145–54.
Melnik BC. Function of FGFR2-signalling within the pathogenesis of zits. Dermato Endocrinol. 2009;1(3):141–56.
Melnik B, Schmitz G. FGFR2 signalling and the pathogenesis of zits. J Dtsch Dermatol Ges. 2008;6(9):721–8.
Kumtornrut C, Yamauchi T, Koike S, Aiba S, Yamasaki Okay. Androgens modulate keratinocyte differentiation not directly by means of enhancing development issue manufacturing from dermal fibroblasts. J Dermatol Sci. 2019;93(3):150–8.
Melnik BC, Schmitz G, Zouboulis CC. Anti-acne brokers attenuate FGFR2 sign transduction in zits. J Make investments Dermatol. 2009;129(8):1868–77.
Wu T, Jiang X, Zhang X, Wu B, Xu B, Liu X, et al. Intrahepatic cholangiocarcinoma: cutting-edge of FGFR Inhibitors. Most cancers Management. 2021;28:1073274821989314.
Saborowski A, Lehmann U, Vogel A. FGFR inhibitors in cholangiocarcinoma: what’s now and what’s subsequent? Ther Adv Med Oncol. 2020;12:1758835920953293.
Manetti F, Botta M. Small-molecule inhibitors of fibroblast development issue receptor (FGFR) tyrosine kinases (TK). Curr Pharm Des. 2003;9(7):567–81.
Lamont FR, Tomlinson DC, Cooper PA, Shnyder SD, Chester JD, Knowles MA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma development in vitro and in vivo. Br J Most cancers. 2011;104(1):75–82.
Harrison C. Weight problems and diabetes: an FGFR antibody with long-lasting results. Nat Rev Drug Discov. 2012;11(2):106.
Du E, Xiao L, Hurley MM. FGF23 neutralizing antibody ameliorates hypophosphatemia and impaired FGF receptor signalling in kidneys of HMWFGF2 transgenic mice. J Cell Physiol. 2017;232(3):610–6.
Maruyama-Takahashi Okay, Shimada N, Imada T, Maekawa-Tokuda Y, Ishii T, Ouchi J, et al. A neutralizing anti-fibroblast development issue (FGF) 8 monoclonal antibody reveals anti-tumor exercise towards FGF8b-expressing LNCaP xenografts in androgen-dependent and-independent situations. Prostate. 2008;68(6):640–50.
Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. FGFR inhibitors in oncology: perception on the administration of toxicities in scientific follow. Cancers. 2021;13(12):2968.
Weaver A, Bossaer JB. Fibroblast development issue receptor (FGFR) inhibitors: a assessment of a novel therapeutic class. J Oncol Pharm Pract. 2021;27(3):702–10.
Liang Q, Wang J, Zhao L, Hou J, Hu Y, Shi J. Latest advances of twin FGFR inhibitors as a novel remedy for most cancers. Eur J Med Chem. 2021;214:113205.
Sabnis RW. Novel bicyclic heterocycles as FGFR inhibitors for treating most cancers. ACS Med Chem Lett. 2021;12(3):320–1.
Xiaojia Chen XL, Tian Baoqing, Tan Xuan, Han Wei, Nie Chuangjun, Wang JiaKang, Jin Yuan, Li YaDan, Hong An. FGFR2 and miR-671–5p as key members concerned within the development of human esophageal squamous cell carcinoma. Chicago USA: AACR; 2018.
Chen XJ, Solar FY, Xie QL, Liao MD, Zhang L, Li ZY, et al. Cloning and excessive degree nonfusion expression of recombinant human fundamental fibroblast development consider escherichia coli. Acta Pharmacol Sin. 2002;23(9):782–6.
Hosaka Okay, Yang Y, Seki T, Du Q, Jing X, He X, et al. Therapeutic paradigm of twin concentrating on VEGF and PDGF for successfully treating FGF-2 off-target tumors. Nat Commun. 2020;11(1):3704.
Wang Y, Li Y, Cao J, Meng Q, Li X, Zhang Y, et al. Improvement and characterization of a novel peptide-drug conjugate with DM1 for therapy of FGFR2-positive tumors. Biomedicines. 2021;9(8):849.
Li X, Nie C, Tian B, Tan X, Han W, Wang J, et al. miR-671–5p blocks the development of human esophageal squamous cell carcinoma by suppressing FGFR2. Int J Biol Sci. 2019;15(9):1892–904.
Zhang Yibo, Ouyang Man, Wang Hailong, Zhang Bihui, Guang Wenhua, Liu Ruiwu, Li Xiaocen, Shih Tsung-Chieh, Li Zhixin, Cao Jieqiong, Meng Qiling, Zijian Su, Ye Jinshao, Liu Feng, Hong An, Chen Xiaojia. A cyclic peptide retards the proliferation of DU145 prostate most cancers cells in vitro and in vivo by means of inhibition of FGFR2. Med Comm. 2020;1(3):362–75.
Hsiao PF, Peng S, Tang TC, Lin SY, Tsai HC. Enhancing the in vivo transdermal supply of gold nanoparticles utilizing poly(ethylene glycol) and its oleylamine conjugate. Int J Nanomed. 2016;11:1867–78.
Qin P, Tang J, Solar D, Yang Y, Liu N, Li Y, et al. Zn(2+) cross-linked alginate carrying hole silica nanoparticles loaded with RL-QN15 peptides gives promising therapy for persistent pores and skin wounds. ACS Appl Mater Interfaces. 2022;14(26):29491–505.
Braun Okay, Pochert A, Linden M, Davoudi M, Schmidtchen A, Nordstrom R, et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci. 2016;475:161–70.
Choi JS, Zhu Y, Li H, Peyda P, Nguyen TT, Shen MY, et al. Cross-linked fluorescent supramolecular nanoparticles as finite tattoo pigments with controllable intradermal retention instances. ACS Nano. 2017;11(1):153–62.
Hoffman AS. Hydrogels for biomedical functions. Adv Drug Ship Rev. 2012;64:18–23.
Dowaidar M, Abdelhamid HN, Hallbrink M, Zou X, Langel U. Graphene oxide nanosheets in complicated with cell penetrating peptides for oligonucleotides supply. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.
Dowaidar M, Abdelhamid HN, Hallbrink M, Freimann Okay, Kurrikoff Okay, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene supply. Sci Rep. 2017;7(1):9159.
Abdelhamid HN, Dowaidar M, Hallbrink M, Langel U. Gene supply utilizing cell penetrating peptides-zeolitic imidazolate frameworks. Micropor Mesopor Mat. 2020;300:110173.
Graca MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-based wound dressings: a assessment. Carbohydr Polym. 2020;241:116364.
Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Focused clindamycin supply to pilosebaceous models by chitosan or hyaluronic acid nanoparticles for improved topical therapy of zits vulgaris. Carbohydr Polym. 2021;253:117295.
Auffret N, Claudel JP, Leccia MT, Ballanger F, Dreno B. Novel and rising therapy choices for zits vulgaris. Eur J Dermatol EJD. 2022;32(4):451–8.
Kwon SS, Kong BJ, Park SN. Physicochemical properties of pH-sensitive hydrogels primarily based on hydroxyethyl cellulose-hyaluronic acid and for functions as transdermal supply techniques for pores and skin lesions. Eur J Pharm Biopharm. 2015;92:146–54.
Castro KC, Campos MGN, Mei LHI. Hyaluronic acid electrospinning: challenges, functions in wound dressings and new views. Int J Biol Macromol. 2021;173:251–66.
Im M, Kim SY, Sohn KC, Choi DK, Lee Y, Web optimization YJ, et al. Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes. J Investi Dermatol. 2012;132(12):2700–8.
Mirshahpanah P, Maibach HI. Fashions in acnegenesis. Cutan Ocul Toxicol. 2007;26(3):195–202.
Choi Okay, Jin M, Zouboulis CC, Lee Y. Elevated lipid accumulation beneath hypoxia in SZ95 human sebocytes. Dermatology. 2020. https://doi.org/10.1159/000505537.
Clayton RW, Gobel Okay, Niessen CM, Paus R, van Steensel MAM, Lim X. Homeostasis of the sebaceous gland and mechanisms of zits pathogenesis. Br J Dermatol. 2019;181(4):677–90.
Lovaszi M, Mattii M, Eyerich Okay, Gacsi A, Csanyi E, Kovacs D, et al. Sebum lipids affect macrophage polarization and activation. Br J Dermatol. 2017;177(6):1671–82.
Marks DH, Prasad S, De Souza B, Burns LJ, Senna MM. Topical antiandrogen therapies for androgenetic alopecia and zits vulgaris. Am J Clin Dermatol. 2020;21(2):245–54.
Armstrong CM, Gao AC. Adaptive pathways and rising methods overcoming therapy resistance in castration resistant prostate most cancers. Asian J Urol. 2016;3(4):185–94.
Zouboulis CC. Pimples and sebaceous gland perform. Clin Dermatol. 2004;22(5):360–6.
Eichenfield DZ, Sprague J, Eichenfield LF. Administration of zits vulgaris: a assessment. JAMA. 2021;326(20):2055–67.
Habeshian KA, Cohen BA. Present points within the therapy of zits vulgaris. Pediatrics. 2020;145(2):S225–30.
Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang CM, et al. The antimicrobial exercise of liposomal lauric acids towards propionibacterium acnes. Biomaterials. 2009;30(30):6035–40.
Lapteva M, Moller M, Gurny R, Kalia YN. Self-assembled polymeric nanocarriers for the focused supply of retinoic acid to the hair follicle. Nanoscale. 2015;7(44):18651–62.
Wang Z, Liu L, Xiang S, Jiang C, Wu W, Ruan S, et al. Formulation and characterization of a 3D-printed cryptotanshinone-loaded niosomal hydrogel for topical remedy of zits. AAPS PharmSciTech. 2020;21(5):159.
Chutoprapat R, Kopongpanich P, Chan LW. A mini-review on strong lipid nanoparticles and nanostructured lipid carriers: topical supply of phytochemicals for the therapy of zits vulgaris. Molecules. 2022;27(11):3460.
Schmidt JB, Spona J, Huber J. Androgen receptor in hirsutism and zits. Gynecol Obstet Make investments. 1986;22(4):206–11.
Inui S, Nakao T, Itami S. Modulation of androgen receptor transcriptional exercise by anti-acne reagents. J Dermatol Sci. 2004;36(2):97–101.
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.
Zhao X, Yang Y, Solar B-F, Shi Y, Yang X, Xiao W, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24(12):1403–19.
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation effectivity. Cell. 2015;161(6):1388–99.
Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27(3):444–7.
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–28.
Ben-Amitai D, Laron Z. Impact of insulin-like development factor-1 deficiency or administration on the prevalence of zits. J Eur Acad Dermatol Venereol JEADV. 2011;25(8):950–4.
Agamia NF, Hussein OM, Abdelmaksoud RE, Abdalla DM, Talaat IM, Zaki EI, et al. Impact of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of sufferers with zits vulgaris. Exp Dermatol. 2018;27(12):1344–51.
Ma Q, Fu W, Li P, Nicosia SV, Jenster G, Zhang X, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol. 2009;23(2):213–25.
Oules B, Philippeos C, Segal J, Tihy M, Vietri Rudan M, Cujba AM, et al. Contribution of GATA6 to homeostasis of the human higher pilosebaceous unit and zits pathogenesis. Nat Commun. 2020;11(1):5067.
Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to advertise cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 2021;118(4):e2003193118.
Melnik BC. p53: key conductor of all anti-acne therapies. J Transl Med. 2017;15(1):195.
Cottle DL, Kretzschmar Okay, Schweiger PJ, Quist SR, Gollnick HP, Natsuga Okay, et al. c-MYC-induced sebaceous gland differentiation is managed by an androgen receptor/p53 axis. Cell Rep. 2013;3(2):427–41.
Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007;9(12):1152–9.
Cai C, Balk SP. Intratumoral androgen biosynthesis in prostate most cancers pathogenesis and response to remedy. Endocrine-Relat Most cancers. 2011;18(5):R175-82.
Crocco EI, Bonifacio EB, Facchini G, da Silva GH, da Silva MS, Pinheiro A, et al. Modulation of pores and skin androgenesis and sebum manufacturing by a dermocosmetic formulation. J Cosmet Dermatol. 2021;20(1):360–5.
Bansal P, Sardana Okay, Vats G, Sharma L, Garga UC, Khurana A. A Potential research analyzing set off components and hormonal abnormalities in grownup feminine zits. Indian Dermatol On-line J. 2020;11(4):544–50.